These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


347 related items for PubMed ID: 18399522

  • 1. Estimating the temperature dependence of peptide folding entropies and free enthalpies from total energies in molecular dynamics simulations.
    Boned R, van Gunsteren WF, Daura X.
    Chemistry; 2008; 14(16):5039-46. PubMed ID: 18399522
    [Abstract] [Full Text] [Related]

  • 2. Essential dynamics of reversible peptide folding: memory-free conformational dynamics governed by internal hydrogen bonds.
    de Groot BL, Daura X, Mark AE, Grubmüller H.
    J Mol Biol; 2001 May 25; 309(1):299-313. PubMed ID: 11491298
    [Abstract] [Full Text] [Related]

  • 3. Structural, thermodynamic, and kinetic properties of Gramicidin analogue GS6 studied by molecular dynamics simulations and statistical mechanics.
    Zanetti-Polzi L, Anselmi M, D'Alessandro M, Amadei A, Di Nola A.
    Biopolymers; 2009 Dec 25; 91(12):1154-60. PubMed ID: 19396809
    [Abstract] [Full Text] [Related]

  • 4. Non-arrhenius behavior in the unfolding of a short, hydrophobic alpha-helix. Complementarity of molecular dynamics and lattice model simulations.
    Collet O, Chipot C.
    J Am Chem Soc; 2003 May 28; 125(21):6573-80. PubMed ID: 12785798
    [Abstract] [Full Text] [Related]

  • 5. Conformational energies and entropies of peptides, and the peptide-protein binding problem.
    Unal EB, Gursoy A, Erman B.
    Phys Biol; 2009 Jun 23; 6(3):036014. PubMed ID: 19549999
    [Abstract] [Full Text] [Related]

  • 6. Energy landscape of the trpzip2 peptide.
    Nymeyer H.
    J Phys Chem B; 2009 Jun 18; 113(24):8288-95. PubMed ID: 19469524
    [Abstract] [Full Text] [Related]

  • 7. For the sequence YKGQ, the turn and extended conformational forms are separated by small barriers and the turn propensity persists even at high temperatures: implications for protein folding.
    Kaur H, Sasidhar YU.
    J Phys Chem B; 2012 Mar 29; 116(12):3850-60. PubMed ID: 22385393
    [Abstract] [Full Text] [Related]

  • 8. Molecular dynamics simulations of a reversibly folding beta-heptapeptide in methanol: influence of the treatment of long-range electrostatic interactions.
    Reif MM, Kräutler V, Kastenholz MA, Daura X, Hünenberger PH.
    J Phys Chem B; 2009 Mar 12; 113(10):3112-28. PubMed ID: 19228001
    [Abstract] [Full Text] [Related]

  • 9. Evaluation of configurational entropy methods from peptide folding-unfolding simulation.
    Li DW, Khanlarzadeh M, Wang J, Huo S, Brüschweiler R.
    J Phys Chem B; 2007 Dec 13; 111(49):13807-13. PubMed ID: 18020439
    [Abstract] [Full Text] [Related]

  • 10. Calculation of protein heat capacity from replica-exchange molecular dynamics simulations with different implicit solvent models.
    Yeh IC, Lee MS, Olson MA.
    J Phys Chem B; 2008 Nov 27; 112(47):15064-73. PubMed ID: 18959439
    [Abstract] [Full Text] [Related]

  • 11. Solvent electrostriction-driven peptide folding revealed by quasi-Gaussian entropy theory and molecular dynamics simulation.
    Noé F, Daidone I, Smith JC, di Nola A, Amadei A.
    J Phys Chem B; 2008 Sep 04; 112(35):11155-63. PubMed ID: 18698708
    [Abstract] [Full Text] [Related]

  • 12. New force replica exchange method and protein folding pathways probed by force-clamp technique.
    Kouza M, Hu CK, Li MS.
    J Chem Phys; 2008 Jan 28; 128(4):045103. PubMed ID: 18248010
    [Abstract] [Full Text] [Related]

  • 13. Simulated annealing coupled replica exchange molecular dynamics--an efficient conformational sampling method.
    Kannan S, Zacharias M.
    J Struct Biol; 2009 Jun 28; 166(3):288-94. PubMed ID: 19272454
    [Abstract] [Full Text] [Related]

  • 14. Reversible peptide folding in solution by molecular dynamics simulation.
    Daura X, Jaun B, Seebach D, van Gunsteren WF, Mark AE.
    J Mol Biol; 1998 Jul 31; 280(5):925-32. PubMed ID: 9671560
    [Abstract] [Full Text] [Related]

  • 15. The enthalpy change in protein folding and binding: refinement of parameters for structure-based calculations.
    Hilser VJ, Gómez J, Freire E.
    Proteins; 1996 Oct 31; 26(2):123-33. PubMed ID: 8916220
    [Abstract] [Full Text] [Related]

  • 16. Using one-step perturbation to predict the effect of changing force-field parameters on the simulated folding equilibrium of a beta-peptide in solution.
    Lin Z, Liu H, van Gunsteren WF.
    J Comput Chem; 2010 Oct 31; 31(13):2419-27. PubMed ID: 20652985
    [Abstract] [Full Text] [Related]

  • 17. Temperature dependence of three-body hydrophobic interactions: potential of mean force, enthalpy, entropy, heat capacity, and nonadditivity.
    Moghaddam MS, Shimizu S, Chan HS.
    J Am Chem Soc; 2005 Jan 12; 127(1):303-16. PubMed ID: 15631480
    [Abstract] [Full Text] [Related]

  • 18. Determination of the thermodynamics of carbonic anhydrase acid-unfolding by titration calorimetry.
    Baranauskiene L, Matuliene J, Matulis D.
    J Biochem Biophys Methods; 2008 Apr 24; 70(6):1043-7. PubMed ID: 18255160
    [Abstract] [Full Text] [Related]

  • 19. Enthalpy distribution for the alpha-helix/random coil transition in a model peptide: a study of two-state behavior.
    Poland D.
    Biopolymers; 2001 Apr 24; 60(4):317-21. PubMed ID: 11774234
    [Abstract] [Full Text] [Related]

  • 20. Temperature dependence of the distribution of the first passage time: results from discontinuous molecular dynamics simulations of an all-atom model of the second beta-hairpin fragment of protein G.
    Zhou Y, Zhang C, Stell G, Wang J.
    J Am Chem Soc; 2003 May 21; 125(20):6300-5. PubMed ID: 12785863
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.