These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
214 related items for PubMed ID: 18400105
1. Very mild disease phenotype of congenic CftrTgH(neoim)Hgu cystic fibrosis mice. Tóth B, Wilke M, Stanke F, Dorsch M, Jansen S, Wedekind D, Charizopoulou N, Bot A, Burmester M, Leonhard-Marek S, de Jonge HR, Hedrich HJ, Breves G, Tümmler B. BMC Genet; 2008 Apr 09; 9():28. PubMed ID: 18400105 [Abstract] [Full Text] [Related]
2. Spontaneous rescue from cystic fibrosis in a mouse model. Charizopoulou N, Wilke M, Dorsch M, Bot A, Jorna H, Jansen S, Stanke F, Hedrich HJ, de Jonge HR, Tümmler B. BMC Genet; 2006 Mar 29; 7():18. PubMed ID: 16571105 [Abstract] [Full Text] [Related]
4. Characterisation of electrogenic nutrient absorption in the Cftr TgH(neoim)Hgu mouse model. Tóth B, Leonhard-Marek S, Hedrich HJ, Breves G. J Comp Physiol B; 2008 Aug 29; 178(6):705-12. PubMed ID: 18369642 [Abstract] [Full Text] [Related]
5. Characterisation of chloride currents across the proximal colon in CftrTgH(neoim)1Hgu congenic mice. Bleich EM, Leonhard-Marek S, Beyerbach M, Breves G. J Comp Physiol B; 2007 Jan 29; 177(1):61-73. PubMed ID: 16868751 [Abstract] [Full Text] [Related]
6. Acute intratracheal Pseudomonas aeruginosa infection in cystic fibrosis mice is age-independent. Munder A, Wölbeling F, Kerber-Momot T, Wedekind D, Baumann U, Gulbins E, Tümmler B. Respir Res; 2011 Nov 07; 12(1):148. PubMed ID: 22059807 [Abstract] [Full Text] [Related]
7. Biokinetics of nanoparticles and susceptibility to particulate exposure in a murine model of cystic fibrosis. Geiser M, Stoeger T, Casaulta M, Chen S, Semmler-Behnke M, Bolle I, Takenaka S, Kreyling WG, Schulz H. Part Fibre Toxicol; 2014 Apr 24; 11():19. PubMed ID: 24758489 [Abstract] [Full Text] [Related]
8. Lung pathology in response to repeated exposure to Staphylococcus aureus in congenic residual function cystic fibrosis mice does not increase in response to decreased CFTR levels or increased bacterial load. Davidson DJ, Webb S, Teague P, Govan JR, Dorin JR. Pathobiology; 2004 Apr 24; 71(3):152-8. PubMed ID: 15051928 [Abstract] [Full Text] [Related]
10. Detection of modifier loci influencing the lung phenotype of cystic fibrosis knockout mice. Haston CK, McKerlie C, Newbigging S, Corey M, Rozmahel R, Tsui LC. Mamm Genome; 2002 Nov 13; 13(11):605-13. PubMed ID: 12461645 [Abstract] [Full Text] [Related]
11. Mouse models of cystic fibrosis: phenotypic analysis and research applications. Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L, Bot A, Jorna H, de Jonge HR, Scholte BJ. J Cyst Fibros; 2011 Jun 13; 10 Suppl 2():S152-71. PubMed ID: 21658634 [Abstract] [Full Text] [Related]
12. Residual cftr expression varies with age in cftr(tm1Hgu) cystic fibrosis mice: impact on morphology and physiology. Larbig M, Jansen S, Dorsch M, Bernhard W, Bellmann B, Dorin JR, Porteous DJ, Von Der Hardt H, Steinmetz I, Hedrich HJ, Tuemmler B, Tschernig T. Pathobiology; 2011 Jun 13; 70(2):89-97. PubMed ID: 12476034 [Abstract] [Full Text] [Related]
13. An association study on contrasting cystic fibrosis endophenotypes recognizes KRT8 but not KRT18 as a modifier of cystic fibrosis disease severity and CFTR mediated residual chloride secretion. Stanke F, Hedtfeld S, Becker T, Tümmler B. BMC Med Genet; 2011 May 06; 12():62. PubMed ID: 21548936 [Abstract] [Full Text] [Related]
14. Mucus secretion by single tracheal submucosal glands from normal and cystic fibrosis transmembrane conductance regulator knockout mice. Ianowski JP, Choi JY, Wine JJ, Hanrahan JW. J Physiol; 2007 Apr 01; 580(Pt 1):301-14. PubMed ID: 17204498 [Abstract] [Full Text] [Related]
15. Expression of S100A8 correlates with inflammatory lung disease in congenic mice deficient of the cystic fibrosis transmembrane conductance regulator. Tirkos S, Newbigging S, Nguyen V, Keet M, Ackerley C, Kent G, Rozmahel RF. Respir Res; 2006 Mar 29; 7(1):51. PubMed ID: 16571124 [Abstract] [Full Text] [Related]
16. Potential genetic modifiers of the cystic fibrosis intestinal inflammatory phenotype on mouse chromosomes 1, 9, and 10. Norkina O, De Lisle RC. BMC Genet; 2005 May 27; 6():29. PubMed ID: 15921521 [Abstract] [Full Text] [Related]
17. Loci of intestinal distress in cystic fibrosis knockout mice. Haston CK, Tsui LC. Physiol Genomics; 2003 Jan 15; 12(2):79-84. PubMed ID: 12441405 [Abstract] [Full Text] [Related]
18. Cystic fibrosis mouse model-dependent intestinal structure and gut microbiome. Bazett M, Honeyman L, Stefanov AN, Pope CE, Hoffman LR, Haston CK. Mamm Genome; 2015 Jun 15; 26(5-6):222-34. PubMed ID: 25721416 [Abstract] [Full Text] [Related]
20. rAAV-CFTRΔR Rescues the Cystic Fibrosis Phenotype in Human Intestinal Organoids and Cystic Fibrosis Mice. Vidović D, Carlon MS, da Cunha MF, Dekkers JF, Hollenhorst MI, Bijvelds MJ, Ramalho AS, Van den Haute C, Ferrante M, Baekelandt V, Janssens HM, De Boeck K, Sermet-Gaudelus I, de Jonge HR, Gijsbers R, Beekman JM, Edelman A, Debyser Z. Am J Respir Crit Care Med; 2016 Feb 01; 193(3):288-98. PubMed ID: 26509335 [Abstract] [Full Text] [Related] Page: [Next] [New Search]