These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of increased systolic Ca(2+) and β-adrenergic stimulation on Ca(2+) transient decline in NOS1 knockout cardiac myocytes. Roof SR, Biesiadecki BJ, Davis JP, Janssen PM, Ziolo MT. Nitric Oxide; 2012 Dec 01; 27(4):242-7. PubMed ID: 22960389 [Abstract] [Full Text] [Related]
3. Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases. Khan SA, Skaf MW, Harrison RW, Lee K, Minhas KM, Kumar A, Fradley M, Shoukas AA, Berkowitz DE, Hare JM. Circ Res; 2003 Jun 27; 92(12):1322-9. PubMed ID: 12764022 [Abstract] [Full Text] [Related]
4. Role of phospholamban in cyclic GMP mediated signaling in cardiac myocytes. Zhang Q, Scholz PM, Pilzak A, Su J, Weiss HR. Cell Physiol Biochem; 2007 Jun 27; 20(1-4):157-66. PubMed ID: 17595525 [Abstract] [Full Text] [Related]
5. Diesterified nitrone rescues nitroso-redox levels and increases myocyte contraction via increased SR Ca(2+) handling. Traynham CJ, Roof SR, Wang H, Prosak RA, Tang L, Viatchenko-Karpinski S, Ho HT, Racoma IO, Catalano DJ, Huang X, Han Y, Kim SU, Gyorke S, Billman GE, Villamena FA, Ziolo MT. PLoS One; 2012 Jun 27; 7(12):e52005. PubMed ID: 23300588 [Abstract] [Full Text] [Related]
6. Cardiac nitric oxide synthase 1 regulates basal and beta-adrenergic contractility in murine ventricular myocytes. Ashley EA, Sears CE, Bryant SM, Watkins HC, Casadei B. Circulation; 2002 Jun 25; 105(25):3011-6. PubMed ID: 12081996 [Abstract] [Full Text] [Related]
7. Regulation of endothelial nitric-oxide synthase (NOS) S-glutathionylation by neuronal NOS: evidence of a functional interaction between myocardial constitutive NOS isoforms. Idigo WO, Reilly S, Zhang MH, Zhang YH, Jayaram R, Carnicer R, Crabtree MJ, Balligand JL, Casadei B. J Biol Chem; 2012 Dec 21; 287(52):43665-73. PubMed ID: 23091050 [Abstract] [Full Text] [Related]
8. Targeting of phospholamban by peroxynitrite decreases beta-adrenergic stimulation in cardiomyocytes. Kohr MJ, Wang H, Wheeler DG, Velayutham M, Zweier JL, Ziolo MT. Cardiovasc Res; 2008 Jan 15; 77(2):353-61. PubMed ID: 18006474 [Abstract] [Full Text] [Related]
9. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation. Curran J, Tang L, Roof SR, Velmurugan S, Millard A, Shonts S, Wang H, Santiago D, Ahmad U, Perryman M, Bers DM, Mohler PJ, Ziolo MT, Shannon TR. PLoS One; 2014 Jan 15; 9(2):e87495. PubMed ID: 24498331 [Abstract] [Full Text] [Related]
10. Endothelial nitric oxide synthase decreases beta-adrenergic responsiveness via inhibition of the L-type Ca2+ current. Wang H, Kohr MJ, Wheeler DG, Ziolo MT. Am J Physiol Heart Circ Physiol; 2008 Mar 15; 294(3):H1473-80. PubMed ID: 18203845 [Abstract] [Full Text] [Related]
11. Phosphorylation of phospholamban and troponin I in beta-adrenergic-induced acceleration of cardiac relaxation. Li L, Desantiago J, Chu G, Kranias EG, Bers DM. Am J Physiol Heart Circ Physiol; 2000 Mar 15; 278(3):H769-79. PubMed ID: 10710345 [Abstract] [Full Text] [Related]
12. Phospholamban is required for CaMKII-dependent recovery of Ca transients and SR Ca reuptake during acidosis in cardiac myocytes. DeSantiago J, Maier LS, Bers DM. J Mol Cell Cardiol; 2004 Jan 15; 36(1):67-74. PubMed ID: 14734049 [Abstract] [Full Text] [Related]
13. Expression of active p21-activated kinase-1 induces Ca2+ flux modification with altered regulatory protein phosphorylation in cardiac myocytes. Sheehan KA, Ke Y, Wolska BM, Solaro RJ. Am J Physiol Cell Physiol; 2009 Jan 15; 296(1):C47-58. PubMed ID: 18923061 [Abstract] [Full Text] [Related]
14. Protein kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Li Y, Kranias EG, Mignery GA, Bers DM. Circ Res; 2002 Feb 22; 90(3):309-16. PubMed ID: 11861420 [Abstract] [Full Text] [Related]
16. Modulation of cardiac Ca2+ channels by isoproterenol studied in transgenic mice with altered SR Ca2+ content. Sako H, Green SA, Kranias EG, Yatani A. Am J Physiol; 1997 Nov 20; 273(5 Pt 1):C1666-72. PubMed ID: 9374653 [Abstract] [Full Text] [Related]
17. Effect of ablation of phospholamban on dynamics of cardiac myocyte contraction and intracellular Ca2+. Wolska BM, Stojanovic MO, Luo W, Kranias EG, Solaro RJ. Am J Physiol; 1996 Jul 20; 271(1 Pt 1):C391-7. PubMed ID: 8760070 [Abstract] [Full Text] [Related]
18. Ischemic postconditioning protects the heart against ischemia-reperfusion injury via neuronal nitric oxide synthase in the sarcoplasmic reticulum and mitochondria. Hu L, Wang J, Zhu H, Wu X, Zhou L, Song Y, Zhu S, Hao M, Liu C, Fan Y, Wang Y, Li Q. Cell Death Dis; 2016 May 12; 7(5):e2222. PubMed ID: 27171264 [Abstract] [Full Text] [Related]
19. Regulation of myocyte contraction via neuronal nitric oxide synthase: role of ryanodine receptor S-nitrosylation. Wang H, Viatchenko-Karpinski S, Sun J, Györke I, Benkusky NA, Kohr MJ, Valdivia HH, Murphy E, Györke S, Ziolo MT. J Physiol; 2010 Aug 01; 588(Pt 15):2905-17. PubMed ID: 20530114 [Abstract] [Full Text] [Related]
20. Neuronal nitric oxide synthase is indispensable for the cardiac adaptive effects of exercise. Roof SR, Tang L, Ostler JE, Periasamy M, Györke S, Billman GE, Ziolo MT. Basic Res Cardiol; 2013 Mar 01; 108(2):332. PubMed ID: 23377961 [Abstract] [Full Text] [Related] Page: [Next] [New Search]