These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


112 related items for PubMed ID: 1840321

  • 1. Changes in 1H-NMR chemical shifts of Bis-GMA and its related methacrylates induced by their interaction with phosphatidylcholine/cholesterol liposomes.
    Fujisawa S, Kadoma Y, Komoda Y.
    Dent Mater J; 1991 Dec; 10(2):121-7. PubMed ID: 1840321
    [Abstract] [Full Text] [Related]

  • 2. Changes in NMR chemical shifts of methacrylates induced by their interactions with the phospholipid and the phospholipid/cholesterol liposome system.
    Fujisawa S, Kadoma Y, Komoda Y.
    Dent Mater J; 1990 Jun; 9(1):100-7. PubMed ID: 2098205
    [Abstract] [Full Text] [Related]

  • 3. (1)H and (13)C NMR chemical shifts of methacrylate molecules associated with DMPC and/or DPPC liposomes.
    Fujisawa S, Ishihara M, Kadoma Y.
    J Liposome Res; 2005 Jun; 15(3-4):167-74. PubMed ID: 16393908
    [Abstract] [Full Text] [Related]

  • 4. Dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol liposomes as predictors of the cytotoxicity of bis-GMA related compounds.
    Fujisawa S, Kadoma Y, Ishihara M, Atsumi T, Yokoe I.
    J Liposome Res; 2004 Jun; 14(1-2):39-49. PubMed ID: 15461931
    [Abstract] [Full Text] [Related]

  • 5. Hemolysis mechanism of dental adhesive monomer (methacryloyloxydecyl dihydrogen phosphate) using a phosphatidylcholine liposome system as a model for biomembranes.
    Fujisawa S, Kadoma Y, Komoda Y.
    Dent Mater J; 1990 Dec; 9(2):136-46. PubMed ID: 2099883
    [Abstract] [Full Text] [Related]

  • 6. Further NMR-spectroscopic studies of interaction of phospholipid liposomes with methacryloyloxydecyl dihydrogen phosphate (MDP) in dental adhesives.
    Fujisawa S, Komoda Y.
    Dent Mater J; 1993 Jun; 12(1):69-74. PubMed ID: 8306608
    [Abstract] [Full Text] [Related]

  • 7. Cytotoxicity of methyl methacrylate (MMA) and related compounds and their interaction with dipalmitoylphosphatidylcholine (DPPC) liposomes as a model for biomembranes.
    Fujisawa S, Atsumi T, Kadoma Y.
    Oral Dis; 2000 Jul; 6(4):215-21. PubMed ID: 10918558
    [Abstract] [Full Text] [Related]

  • 8. Nuclear magnetic resonance spectroscopic studies of interaction of bis-GMA analogues with phosphatidylcholine liposomes as a model for biomembranes.
    Fujisawa S, Kadoma Y, Komoda Y.
    Biomaterials; 1989 May; 10(4):269-72. PubMed ID: 2525936
    [Abstract] [Full Text] [Related]

  • 9. Nuclear magnetic resonance spectroscopic studies of the interaction of methyl methacrylate and ethylene dimethacrylate with phosphatidylcholine liposomes as a model for biomembranes.
    Fujisawa S, Kadoma Y, Komoda Y.
    Biomaterials; 1989 Jan; 10(1):51-5. PubMed ID: 2713434
    [Abstract] [Full Text] [Related]

  • 10. The effects of the dental methacrylates TEGDMA, Bis-GMA, and UDMA on neutrophils in vitro.
    Alizadehgharib S, Östberg AK, Dahlstrand Rudin A, Dahlgren U, Christenson K.
    Clin Exp Dent Res; 2020 Aug; 6(4):439-447. PubMed ID: 32543782
    [Abstract] [Full Text] [Related]

  • 11. Cytotoxicity and phospholipid-liposome phase-transition properties of 2-hydroxyethyl methacrylate (HEMA).
    Fujisawa S, Atsumi T, Kadoma Y.
    Artif Cells Blood Substit Immobil Biotechnol; 2001 May; 29(3):245-61. PubMed ID: 11358040
    [Abstract] [Full Text] [Related]

  • 12. 1H and 13C NMR studies of the interaction of eugenol, phenol, and triethyleneglycol dimethacrylate with phospholipid liposomes as a model system for odontoblast membranes.
    Fujisawa S, Kadoma Y, Komoda Y.
    J Dent Res; 1988 Nov; 67(11):1438-41. PubMed ID: 3183163
    [Abstract] [Full Text] [Related]

  • 13. Network structure of Bis-GMA- and UDMA-based resin systems.
    Floyd CJ, Dickens SH.
    Dent Mater; 2006 Dec; 22(12):1143-9. PubMed ID: 16376422
    [Abstract] [Full Text] [Related]

  • 14. Mechanisms of action of (meth)acrylates in hemolytic activity, in vivo toxicity and dipalmitoylphosphatidylcholine (DPPC) liposomes determined using NMR spectroscopy.
    Fujisawa S, Kadoma Y.
    Int J Mol Sci; 2012 Dec; 13(1):758-773. PubMed ID: 22312284
    [Abstract] [Full Text] [Related]

  • 15. Studies on hemolytic activity of bisphenol A diglycidyl methacrylate (BIS-GMA).
    Fujisawa S, Imai Y, Kojima K, Masuhara E.
    J Dent Res; 1978 Jan; 57(1):98-102. PubMed ID: 277507
    [Abstract] [Full Text] [Related]

  • 16. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins.
    Sideridou I, Tserki V, Papanastasiou G.
    Biomaterials; 2002 Apr; 23(8):1819-29. PubMed ID: 11950052
    [Abstract] [Full Text] [Related]

  • 17. Synthesis and characterization of new dimethacrylate monomer and its application in dental resin.
    He J, Liu F, Vallittu PK, Lassila LV.
    J Biomater Sci Polym Ed; 2013 Apr; 24(4):417-30. PubMed ID: 23565684
    [Abstract] [Full Text] [Related]

  • 18. Hemolytic activity of a dental adhesive monomer (N-methacryloyloxy-5-aminosalicylic acid, MASA) and its interaction with phospholipid liposomes as studied by NMR and DSC.
    Fujisawa S, Komoda Y, Kadoma Y.
    Dent Mater J; 1992 Jun; 11(1):17-25. PubMed ID: 1395483
    [Abstract] [Full Text] [Related]

  • 19. Physical and chemical properties of an antimicrobial Bis-GMA free dental resin with quaternary ammonium dimethacrylate monomer.
    Huang QT, He JW, Lin ZM, Liu F, Lassila LVJ, Vallittu PK.
    J Mech Behav Biomed Mater; 2016 Mar; 56():68-76. PubMed ID: 26688422
    [Abstract] [Full Text] [Related]

  • 20. Diffusion of cholesterol and its precursors in lipid membranes studied by 1H pulsed field gradient magic angle spinning NMR.
    Scheidt HA, Huster D, Gawrisch K.
    Biophys J; 2005 Oct; 89(4):2504-12. PubMed ID: 16085761
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.