These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


349 related items for PubMed ID: 18404315

  • 1. Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans.
    Mukai D, Matsuda N, Yoshioka Y, Sato M, Yamasaki T.
    J Nat Med; 2008 Apr; 62(2):155-9. PubMed ID: 18404315
    [Abstract] [Full Text] [Related]

  • 2. Structural characteristics for superoxide anion radical scavenging and productive activities of green tea polyphenols including proanthocyanidin dimers.
    Sato M, Toyazaki H, Yoshioka Y, Yokoi N, Yamasaki T.
    Chem Pharm Bull (Tokyo); 2010 Jan; 58(1):98-102. PubMed ID: 20045974
    [Abstract] [Full Text] [Related]

  • 3. Inhibitory effects of green tea polyphenols on the production of a virulence factor of the periodontal-disease-causing anaerobic bacterium Porphyromonas gingivalis.
    Sakanaka S, Okada Y.
    J Agric Food Chem; 2004 Mar 24; 52(6):1688-92. PubMed ID: 15030231
    [Abstract] [Full Text] [Related]

  • 4. Pigments in green tea leaves (Camellia sinensis) suppress transformation of the aryl hydrocarbon receptor induced by dioxin.
    Fukuda I, Sakane I, Yabushita Y, Kodoi R, Nishiumi S, Kakuda T, Sawamura S, Kanazawa K, Ashida H.
    J Agric Food Chem; 2004 May 05; 52(9):2499-506. PubMed ID: 15113147
    [Abstract] [Full Text] [Related]

  • 5. Green tea polyphenols attenuate glial swelling and mitochondrial dysfunction following oxygen-glucose deprivation in cultures.
    Panickar KS, Polansky MM, Anderson RA.
    Nutr Neurosci; 2009 Jun 05; 12(3):105-13. PubMed ID: 19356313
    [Abstract] [Full Text] [Related]

  • 6. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry.
    Liao Y, Fu X, Zhou H, Rao W, Zeng L, Yang Z.
    Food Chem; 2019 Sep 15; 292():204-210. PubMed ID: 31054666
    [Abstract] [Full Text] [Related]

  • 7. Tea enhances insulin activity.
    Anderson RA, Polansky MM.
    J Agric Food Chem; 2002 Nov 20; 50(24):7182-6. PubMed ID: 12428980
    [Abstract] [Full Text] [Related]

  • 8. Novel inhibitors of fatty-acid synthase from green tea (Camellia sinensis Xihu Longjing) with high activity and a new reacting site.
    Zhang R, Xiao W, Wang X, Wu X, Tian W.
    Biotechnol Appl Biochem; 2006 Jan 20; 43(Pt 1):1-7. PubMed ID: 15943584
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Extraction of Epigallocatechin Gallate and Epicatechin Gallate from Tea Leaves Using β-Cyclodextrin.
    Cui L, Liu Y, Liu T, Yuan Y, Yue T, Cai R, Wang Z.
    J Food Sci; 2017 Feb 20; 82(2):394-400. PubMed ID: 28071811
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Inhibitory effects of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate on mouse type IV allergy.
    Suzuki M, Yoshino K, Maeda-Yamamoto M, Miyase T, Sano M.
    J Agric Food Chem; 2000 Nov 20; 48(11):5649-53. PubMed ID: 11087533
    [Abstract] [Full Text] [Related]

  • 13. Epicatechin-3-O-(3″-O-methyl)-gallate content in various tea cultivars (Camellia sinensis L.) and its in vitro inhibitory effect on histamine release.
    Maeda-Yamamoto M, Ema K, Monobe M, Tokuda Y, Tachibana H.
    J Agric Food Chem; 2012 Mar 07; 60(9):2165-70. PubMed ID: 22339247
    [Abstract] [Full Text] [Related]

  • 14. Characterization of the constituents and antioxidant activity of Brazilian green tea (Camellia sinensis var. assamica IAC-259 cultivar) extracts.
    Saito ST, Gosmann G, Saffi J, Presser M, Richter MF, Bergold AM.
    J Agric Food Chem; 2007 Nov 14; 55(23):9409-14. PubMed ID: 17937477
    [Abstract] [Full Text] [Related]

  • 15. Synergistic Effects of Potentilla fruticosa L. Leaves Combined with Green Tea Polyphenols in a Variety of Oxidation Systems.
    Liu Z, Luo Z, Jia C, Wang D, Li D.
    J Food Sci; 2016 May 14; 81(5):C1091-101. PubMed ID: 27061936
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Separation of polyphenols and caffeine from the acetone extract of fermented tea leaves (Camellia sinensis) using high-performance countercurrent chromatography.
    Choi SJ, Hong YD, Lee B, Park JS, Jeong HW, Kim WG, Shin SS, Yoon KD.
    Molecules; 2015 Jul 21; 20(7):13216-25. PubMed ID: 26197310
    [Abstract] [Full Text] [Related]

  • 18. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro.
    Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H, Mitsunaga T, Hashimoto F, Kiso Y.
    J Agric Food Chem; 2005 Jun 01; 53(11):4593-8. PubMed ID: 15913331
    [Abstract] [Full Text] [Related]

  • 19. Influence of phenolic compounds of Kangra tea [Camellia sinensis (L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas.
    Sourabh A, Kanwar SS, Sud RG, Ghabru A, Sharma OP.
    Braz J Microbiol; 2013 Jun 01; 44(3):709-15. PubMed ID: 24516437
    [Abstract] [Full Text] [Related]

  • 20. Determination of catechin content in representative Chinese tea germplasms.
    Jin JQ, Ma JQ, Ma CL, Yao MZ, Chen L.
    J Agric Food Chem; 2014 Oct 01; 62(39):9436-41. PubMed ID: 25204786
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.