These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1157 related items for PubMed ID: 18406434

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence.
    Sandrini M, Rossini PM, Miniussi C.
    Neuropsychologia; 2008; 46(7):2056-63. PubMed ID: 18336847
    [Abstract] [Full Text] [Related]

  • 3. Abnormal recruitment of working memory updating networks during maintenance of trauma-neutral information in post-traumatic stress disorder.
    Moores KA, Clark CR, McFarlane AC, Brown GC, Puce A, Taylor DJ.
    Psychiatry Res; 2008 Jul 15; 163(2):156-70. PubMed ID: 18455372
    [Abstract] [Full Text] [Related]

  • 4. Interference resolution in spatial working memory.
    Leung HC, Zhang JX.
    Neuroimage; 2004 Nov 15; 23(3):1013-9. PubMed ID: 15528101
    [Abstract] [Full Text] [Related]

  • 5. The left intraparietal sulcus and verbal short-term memory: focus of attention or serial order?
    Majerus S, Poncelet M, Van der Linden M, Albouy G, Salmon E, Sterpenich V, Vandewalle G, Collette F, Maquet P.
    Neuroimage; 2006 Aug 15; 32(2):880-91. PubMed ID: 16702002
    [Abstract] [Full Text] [Related]

  • 6. Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study.
    Gauthier CT, Duyme M, Zanca M, Capron C.
    Cortex; 2009 Feb 15; 45(2):164-76. PubMed ID: 19150518
    [Abstract] [Full Text] [Related]

  • 7. Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention.
    Coull JT, Frith CD.
    Neuroimage; 1998 Aug 15; 8(2):176-87. PubMed ID: 9740760
    [Abstract] [Full Text] [Related]

  • 8. Neural correlates of working memory performance in adolescents and young adults with dyslexia.
    Vasic N, Lohr C, Steinbrink C, Martin C, Wolf RC.
    Neuropsychologia; 2008 Jan 31; 46(2):640-8. PubMed ID: 17950764
    [Abstract] [Full Text] [Related]

  • 9. Hemispheric specialization of the lateral prefrontal cortex for strategic processing during spatial and shape working memory.
    Manoach DS, White NS, Lindgren KA, Heckers S, Coleman MJ, Dubal S, Holzman PS.
    Neuroimage; 2004 Mar 31; 21(3):894-903. PubMed ID: 15006656
    [Abstract] [Full Text] [Related]

  • 10. Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study.
    Kaufmann L, Koppelstaetter F, Delazer M, Siedentopf C, Rhomberg P, Golaszewski S, Felber S, Ischebeck A.
    Neuroimage; 2005 Apr 15; 25(3):888-98. PubMed ID: 15808989
    [Abstract] [Full Text] [Related]

  • 11. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM, Carr TH, Mayer AR, Rao SM.
    J Cogn Neurosci; 2000 Apr 15; 12 Suppl 2():106-17. PubMed ID: 11506651
    [Abstract] [Full Text] [Related]

  • 12. The cognitive control network: Integrated cortical regions with dissociable functions.
    Cole MW, Schneider W.
    Neuroimage; 2007 Aug 01; 37(1):343-60. PubMed ID: 17553704
    [Abstract] [Full Text] [Related]

  • 13. On the neural basis of focused and divided attention.
    Nebel K, Wiese H, Stude P, de Greiff A, Diener HC, Keidel M.
    Brain Res Cogn Brain Res; 2005 Dec 01; 25(3):760-76. PubMed ID: 16337110
    [Abstract] [Full Text] [Related]

  • 14. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E, Bonino D, Gentili C, Sani L, Pietrini P, Vecchi T.
    Neuroscience; 2006 Apr 28; 139(1):339-49. PubMed ID: 16324793
    [Abstract] [Full Text] [Related]

  • 15. The neural basis of executive function in working memory: an fMRI study based on individual differences.
    Osaka N, Osaka M, Kondo H, Morishita M, Fukuyama H, Shibasaki H.
    Neuroimage; 2004 Feb 28; 21(2):623-31. PubMed ID: 14980565
    [Abstract] [Full Text] [Related]

  • 16. Males and females differ in brain activation during cognitive tasks.
    Bell EC, Willson MC, Wilman AH, Dave S, Silverstone PH.
    Neuroimage; 2006 Apr 01; 30(2):529-38. PubMed ID: 16260156
    [Abstract] [Full Text] [Related]

  • 17. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects.
    LaBar KS, Gitelman DR, Parrish TB, Mesulam M.
    Neuroimage; 1999 Dec 01; 10(6):695-704. PubMed ID: 10600415
    [Abstract] [Full Text] [Related]

  • 18. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T, Fafrowicz M, Golonka K, Mojsa-Kaja J, Oginska H, Tucholska K, Urbanik A, Beldzik E, Domagalik A.
    Chronobiol Int; 2010 Jul 01; 27(5):945-58. PubMed ID: 20636208
    [Abstract] [Full Text] [Related]

  • 19. An information-processing model of three cortical regions: evidence in episodic memory retrieval.
    Sohn MH, Goode A, Stenger VA, Jung KJ, Carter CS, Anderson JR.
    Neuroimage; 2005 Mar 01; 25(1):21-33. PubMed ID: 15734340
    [Abstract] [Full Text] [Related]

  • 20. Dissociation between melodic and rhythmic processing during piano performance from musical scores.
    Bengtsson SL, Ullén F.
    Neuroimage; 2006 Mar 01; 30(1):272-84. PubMed ID: 16246591
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 58.