These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 18407472
1. Adsorption of rhodamine B on Rhizopus oryzae: role of functional groups and cell wall components. Das SK, Ghosh P, Ghosh I, Guha AK. Colloids Surf B Biointerfaces; 2008 Aug 01; 65(1):30-4. PubMed ID: 18407472 [Abstract] [Full Text] [Related]
2. Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. Chatterjee S, Das SK, Chakravarty R, Chakrabarti A, Ghosh S, Guha AK. J Hazard Mater; 2010 Feb 15; 174(1-3):47-53. PubMed ID: 19783095 [Abstract] [Full Text] [Related]
3. Adsorption behavior of rhodamine B on Rhizopus oryzae biomass. Das SK, Bhowal J, Das AR, Guha AK. Langmuir; 2006 Aug 15; 22(17):7265-72. PubMed ID: 16893225 [Abstract] [Full Text] [Related]
4. Adsorption behavior of copper ions on Mucor rouxii biomass through microscopic and FTIR analysis. Majumdar SS, Das SK, Saha T, Panda GC, Bandyopadhyoy T, Guha AK. Colloids Surf B Biointerfaces; 2008 May 01; 63(1):138-45. PubMed ID: 18296032 [Abstract] [Full Text] [Related]
5. Polymer modified biomass of baker's yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta. Yu JX, Li BH, Sun XM, Yuan J, Chi RA. J Hazard Mater; 2009 Sep 15; 168(2-3):1147-54. PubMed ID: 19329253 [Abstract] [Full Text] [Related]
6. Biosorption of uranium by chemically modified Rhodotorula glutinis. Bai J, Yao H, Fan F, Lin M, Zhang L, Ding H, Lei F, Wu X, Li X, Guo J, Qin Z. J Environ Radioact; 2010 Nov 15; 101(11):969-73. PubMed ID: 20797810 [Abstract] [Full Text] [Related]
7. Biosorption of chromium by Termitomyces clypeatus. Das SK, Guha AK. Colloids Surf B Biointerfaces; 2007 Oct 15; 60(1):46-54. PubMed ID: 17618091 [Abstract] [Full Text] [Related]
8. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Ojeda JJ, Romero-Gonzalez ME, Bachmann RT, Edyvean RG, Banwart SA. Langmuir; 2008 Apr 15; 24(8):4032-40. PubMed ID: 18302422 [Abstract] [Full Text] [Related]
9. Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Lin Z, Wu J, Xue R, Yang Y. Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb 15; 61(4):761-5. PubMed ID: 15649812 [Abstract] [Full Text] [Related]
10. Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption. Ashkenazy R, Gottlieb L, Yannai S. Biotechnol Bioeng; 1997 Jul 05; 55(1):1-10. PubMed ID: 18636438 [Abstract] [Full Text] [Related]
11. Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Chakravarty R, Banerjee PC. Bioresour Technol; 2012 Mar 05; 108():176-83. PubMed ID: 22261660 [Abstract] [Full Text] [Related]
12. Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Jiang W, Saxena A, Song B, Ward BB, Beveridge TJ, Myneni SC. Langmuir; 2004 Dec 21; 20(26):11433-42. PubMed ID: 15595767 [Abstract] [Full Text] [Related]
13. Assessing adsorption of polycyclic aromatic hydrocarbons on Rhizopus oryzae cell wall components with water-methanol cosolvent model. Ma B, Lv X, He Y, Xu J. Ecotoxicol Environ Saf; 2016 Mar 21; 125():55-60. PubMed ID: 26655233 [Abstract] [Full Text] [Related]
14. [FTIR spectroscopic characterization of chromium-induced changes in root cell wall of plants]. Zhang XB, Liu P, Li DT, Xu GD, Jiang MJ. Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May 21; 28(5):1067-70. PubMed ID: 18720803 [Abstract] [Full Text] [Related]
15. Using FTIR to corroborate the identity of functional groups involved in the binding of Cd and Cr to saltbush (Atriplex canescens) biomass. Sawalha MF, Peralta-Videa JR, Saupe GB, Dokken KM, Gardea-Torresdey JL. Chemosphere; 2007 Jan 21; 66(8):1424-30. PubMed ID: 17084434 [Abstract] [Full Text] [Related]
16. [Study on mechanism of beer yeast adsorbing copper ion by spectroscopy]. Han RP, Yang GY, Zhang JH, Bao GL, Shi J. Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Dec 21; 26(12):2334-7. PubMed ID: 17361744 [Abstract] [Full Text] [Related]
17. A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Lin Z, Zhou C, Wu J, Zhou J, Wang L. Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr 21; 61(6):1195-200. PubMed ID: 15741121 [Abstract] [Full Text] [Related]
18. Identification of potential cell wall component that allows Taka-amylase A adsorption in submerged cultures of Aspergillus oryzae. Sato H, Toyoshima Y, Shintani T, Gomi K. Appl Microbiol Biotechnol; 2011 Dec 21; 92(5):961-9. PubMed ID: 21687962 [Abstract] [Full Text] [Related]
19. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. Hadjoudja S, Deluchat V, Baudu M. J Colloid Interface Sci; 2010 Feb 15; 342(2):293-9. PubMed ID: 20004408 [Abstract] [Full Text] [Related]
20. Adsorption of polycyclic aromatic hydrocarbons (PAHs) on Rhizopus oryzae cell walls: application of cosolvent models for validating the cell wall-water partition coefficient. Ma B, Xu M, Wang J, Chen H, He Y, Wu L, Wang H, Xu J. Bioresour Technol; 2011 Nov 15; 102(22):10542-7. PubMed ID: 21944283 [Abstract] [Full Text] [Related] Page: [Next] [New Search]