These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 18411072
1. Rhythmic arm cycling suppresses hyperactive soleus H-reflex amplitude after stroke. Barzi Y, Zehr EP. Clin Neurophysiol; 2008 Jun; 119(6):1443-52. PubMed ID: 18411072 [Abstract] [Full Text] [Related]
2. Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning. Frigon A, Collins DF, Zehr EP. J Neurophysiol; 2004 Apr; 91(4):1516-23. PubMed ID: 14657191 [Abstract] [Full Text] [Related]
3. Rhythmic arm cycling differentially modulates stretch and H-reflex amplitudes in soleus muscle. Palomino AF, Hundza SR, Zehr EP. Exp Brain Res; 2011 Oct; 214(4):529-37. PubMed ID: 21901451 [Abstract] [Full Text] [Related]
4. Suppression of soleus H-reflex amplitude is graded with frequency of rhythmic arm cycling. Hundza SR, Zehr EP. Exp Brain Res; 2009 Feb; 193(2):297-306. PubMed ID: 19011847 [Abstract] [Full Text] [Related]
5. Facilitation of soleus H-reflex amplitude evoked by cutaneous nerve stimulation at the wrist is not suppressed by rhythmic arm movement. Zehr EP, Frigon A, Hoogenboom N, Collins DF. Exp Brain Res; 2004 Dec; 159(3):382-8. PubMed ID: 15480593 [Abstract] [Full Text] [Related]
6. Rhythmic arm cycling produces a non-specific signal that suppresses Soleus H-reflex amplitude in stationary legs. Loadman PM, Zehr EP. Exp Brain Res; 2007 May; 179(2):199-208. PubMed ID: 17119939 [Abstract] [Full Text] [Related]
7. Short-term plasticity of spinal reflex excitability induced by rhythmic arm movement. Javan B, Zehr EP. J Neurophysiol; 2008 Apr; 99(4):2000-5. PubMed ID: 18234977 [Abstract] [Full Text] [Related]
8. Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke: the arms can give legs a helping hand in rehabilitation. Kaupp C, Pearcey GEP, Klarner T, Sun Y, Cullen H, Barss TS, Zehr EP. J Neurophysiol; 2018 Mar 01; 119(3):1095-1112. PubMed ID: 29212917 [Abstract] [Full Text] [Related]
9. Rhythmic arm cycling modulates Hoffmann reflex excitability differentially in the ankle flexor and extensor muscles. Dragert K, Zehr EP. Neurosci Lett; 2009 Feb 06; 450(3):235-8. PubMed ID: 19028550 [Abstract] [Full Text] [Related]
10. Effect of afferent feedback and central motor commands on soleus H-reflex suppression during arm cycling. Hundza SR, de Ruiter GC, Klimstra M, Zehr EP. J Neurophysiol; 2012 Dec 06; 108(11):3049-58. PubMed ID: 22956797 [Abstract] [Full Text] [Related]
11. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles. Zehr EP, Collins DF, Frigon A, Hoogenboom N. J Neurophysiol; 2003 Jan 06; 89(1):12-21. PubMed ID: 12522155 [Abstract] [Full Text] [Related]
12. Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability. Zehr EP, Klimstra M, Johnson EA, Carroll TJ. Neurosci Lett; 2007 May 23; 419(1):10-4. PubMed ID: 17452078 [Abstract] [Full Text] [Related]
13. Neural mechanisms influencing interlimb coordination during locomotion in humans: presynaptic modulation of forearm H-reflexes during leg cycling. Nakajima T, Mezzarane RA, Klarner T, Barss TS, Hundza SR, Komiyama T, Zehr EP. PLoS One; 2013 May 23; 8(10):e76313. PubMed ID: 24204611 [Abstract] [Full Text] [Related]
14. Phase-dependent modulation of soleus H-reflex amplitude induced by rhythmic arm cycling. de Ruiter GC, Hundza SR, Zehr EP. Neurosci Lett; 2010 May 07; 475(1):7-11. PubMed ID: 20298752 [Abstract] [Full Text] [Related]
15. Corticospinal excitability is lower during rhythmic arm movement than during tonic contraction. Carroll TJ, Baldwin ER, Collins DF, Zehr EP. J Neurophysiol; 2006 Feb 07; 95(2):914-21. PubMed ID: 16251263 [Abstract] [Full Text] [Related]
16. Modulations of interlimb and intralimb cutaneous reflexes during simultaneous arm and leg cycling in humans. Sakamoto M, Endoh T, Nakajima T, Tazoe T, Shiozawa S, Komiyama T. Clin Neurophysiol; 2006 Jun 07; 117(6):1301-11. PubMed ID: 16651023 [Abstract] [Full Text] [Related]
17. Exploiting Interlimb Arm and Leg Connections for Walking Rehabilitation: A Training Intervention in Stroke. Klarner T, Barss TS, Sun Y, Kaupp C, Loadman PM, Zehr EP. Neural Plast; 2016 Jun 07; 2016():1517968. PubMed ID: 27403344 [Abstract] [Full Text] [Related]
19. Interlimb coupling from the arms to legs is differentially specified for populations of motor units comprising the compound H-reflex during "reduced" human locomotion. Mezzarane RA, Klimstra M, Lewis A, Hundza SR, Zehr EP. Exp Brain Res; 2011 Jan 07; 208(2):157-68. PubMed ID: 21063693 [Abstract] [Full Text] [Related]
20. Enhancement of arm and leg locomotor coupling with augmented cutaneous feedback from the hand. Zehr EP, Klimstra M, Dragert K, Barzi Y, Bowden MG, Javan B, Phadke C. J Neurophysiol; 2007 Sep 07; 98(3):1810-4. PubMed ID: 17615121 [Abstract] [Full Text] [Related] Page: [Next] [New Search]