These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


329 related items for PubMed ID: 18422487

  • 1. Differential gene expression analysis of maize leaf at heading stage in response to water-deficit stress.
    Yue G, Zhuang Y, Li Z, Sun L, Zhang J.
    Biosci Rep; 2008 Jun; 28(3):125-34. PubMed ID: 18422487
    [Abstract] [Full Text] [Related]

  • 2. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress.
    Qing DJ, Lu HF, Li N, Dong HT, Dong DF, Li YZ.
    Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788
    [Abstract] [Full Text] [Related]

  • 3. Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays).
    Li HY, Wang TY, Shi YS, Fu JJ, Song YC, Wang GY, Li Y.
    DNA Seq; 2007 Dec; 18(6):445-60. PubMed ID: 17676474
    [Abstract] [Full Text] [Related]

  • 4. Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray.
    Luo M, Liu J, Lee RD, Scully BT, Guo B.
    J Integr Plant Biol; 2010 Dec; 52(12):1059-74. PubMed ID: 21106005
    [Abstract] [Full Text] [Related]

  • 5. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling.
    Hao GP, Xing Y, Zhang JH.
    J Integr Plant Biol; 2008 Apr; 50(4):435-42. PubMed ID: 18713377
    [Abstract] [Full Text] [Related]

  • 6. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L.
    J Exp Bot; 2008 Apr; 59(9):2479-97. PubMed ID: 18503042
    [Abstract] [Full Text] [Related]

  • 7. Differential responses of maize MIP genes to salt stress and ABA.
    Zhu C, Schraut D, Hartung W, Schäffner AR.
    J Exp Bot; 2005 Nov; 56(421):2971-81. PubMed ID: 16216844
    [Abstract] [Full Text] [Related]

  • 8. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z.
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [Abstract] [Full Text] [Related]

  • 9. Expression differences between normal and indeterminate1 maize suggest downstream targets of ID1, a floral transition regulator in maize.
    Coneva V, Zhu T, Colasanti J.
    J Exp Bot; 2007 Aug; 58(13):3679-93. PubMed ID: 17928372
    [Abstract] [Full Text] [Related]

  • 10. Cloning and expression analysis of some genes involved in the phosphoinositide and phospholipid signaling pathways from maize (Zea mays L.).
    Sui Z, Niu L, Yue G, Yang A, Zhang J.
    Gene; 2008 Dec 15; 426(1-2):47-56. PubMed ID: 18824223
    [Abstract] [Full Text] [Related]

  • 11. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes.
    Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK.
    Plant Biotechnol J; 2009 Aug 15; 7(6):512-26. PubMed ID: 19490479
    [Abstract] [Full Text] [Related]

  • 12. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings.
    Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y, Chen X, Zhang J, Zhao J, Su Z, Lv Y, Wang G.
    Plant J; 2006 Dec 15; 48(5):710-27. PubMed ID: 17076806
    [Abstract] [Full Text] [Related]

  • 13. Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L. occurs via programmed cell death.
    Skibbe DS, Wang X, Borsuk LA, Ashlock DA, Nettleton D, Schnable PS.
    J Genet Genomics; 2008 Oct 15; 35(10):603-16. PubMed ID: 18937917
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Water stress induces up-regulation of DOF1 and MIF1 transcription factors and down-regulation of proteins involved in secondary metabolism in amaranth roots (Amaranthus hypochondriacus L.).
    Huerta-Ocampo JA, León-Galván MF, Ortega-Cruz LB, Barrera-Pacheco A, De León-Rodríguez A, Mendoza-Hernández G, de la Rosa AP.
    Plant Biol (Stuttg); 2011 May 15; 13(3):472-82. PubMed ID: 21489098
    [Abstract] [Full Text] [Related]

  • 16. DNA array profiling of gene expression changes during maize embryo development.
    Lee JM, Williams ME, Tingey SV, Rafalski JA.
    Funct Integr Genomics; 2002 May 15; 2(1-2):13-27. PubMed ID: 12021847
    [Abstract] [Full Text] [Related]

  • 17. Transcriptional regulation of plant senescence: from functional genomics to systems biology.
    Breeze E, Harrison E, Page T, Warner N, Shen C, Zhang C, Buchanan-Wollaston V.
    Plant Biol (Stuttg); 2008 Sep 15; 10 Suppl 1():99-109. PubMed ID: 18721315
    [Abstract] [Full Text] [Related]

  • 18. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress.
    Xiao X, Yang F, Zhang S, Korpelainen H, Li C.
    Physiol Plant; 2009 Jun 15; 136(2):150-68. PubMed ID: 19453505
    [Abstract] [Full Text] [Related]

  • 19. Microarray analysis of vegetative phase change in maize.
    Strable J, Borsuk L, Nettleton D, Schnable PS, Irish EE.
    Plant J; 2008 Dec 15; 56(6):1045-57. PubMed ID: 18764925
    [Abstract] [Full Text] [Related]

  • 20. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants.
    Sang J, Zhang A, Lin F, Tan M, Jiang M.
    Cell Res; 2008 May 15; 18(5):577-88. PubMed ID: 18364679
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.