These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


71 related items for PubMed ID: 18424662

  • 21. Oral administration of 1,4-aryl-2-mercaptoimidazole inhibits T-cell proliferation and reduces clinical severity in the murine experimental autoimmune encephalomyelitis model.
    Jung EJ, Hur M, Kim YL, Lee GH, Kim J, Kim I, Lee M, Han HK, Kim MS, Hwang S, Kim S, Woo AM, Yoon Y, Park HJ, Won J.
    J Pharmacol Exp Ther; 2009 Dec; 331(3):1005-13. PubMed ID: 19741152
    [Abstract] [Full Text] [Related]

  • 22. Prevention and treatment of relapsing autoimmune encephalomyelitis with myelin peptide-coupled splenocytes.
    Vandenbark AA, Vainiene M, Ariail K, Miller SD, Offner H.
    J Neurosci Res; 1996 Aug 15; 45(4):430-8. PubMed ID: 8872903
    [Abstract] [Full Text] [Related]

  • 23. L-Selectin-deficient SJL and C57BL/6 mice are not resistant to experimental autoimmune encephalomyelitis.
    Uboldi C, Döring A, Alt C, Estess P, Siegelman M, Engelhardt B.
    Eur J Immunol; 2008 Aug 15; 38(8):2156-67. PubMed ID: 18651702
    [Abstract] [Full Text] [Related]

  • 24. Treatment with anti-granulocyte antibodies inhibits the effector phase of experimental autoimmune encephalomyelitis.
    McColl SR, Staykova MA, Wozniak A, Fordham S, Bruce J, Willenborg DO.
    J Immunol; 1998 Dec 01; 161(11):6421-6. PubMed ID: 9834134
    [Abstract] [Full Text] [Related]

  • 25. [Inhibiton of experimental autoimmune encephalomyelitis in Lewis rats by nasal administration of encephalitogenic MBP peptides: synergistic effects of MBP 68-86 and 87-99].
    Sun B, Yang S, Peng HS, Qiao H, Cao JY, Jin LH, Li HL.
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2007 Feb 01; 23(2):106-9. PubMed ID: 17286899
    [Abstract] [Full Text] [Related]

  • 26. TCR vaccination in aluminum adjuvant protects against autoimmune encephalomyelitis.
    Aroeira LS.
    Clin Immunol; 2006 Jun 01; 119(3):252-60. PubMed ID: 16503420
    [Abstract] [Full Text] [Related]

  • 27. Minor role of bystander tolerance to fetal calf serum in a peptide-specific dendritic cell vaccine model against autoimmunity: comparison with serum-free cultures.
    Röner S, Zinser E, Menges M, Wiethe C, Littmann L, Hänig J, Steinkasserer A, Lutz MB.
    J Immunother; 2008 Sep 01; 31(7):656-64. PubMed ID: 18600179
    [Abstract] [Full Text] [Related]

  • 28. CCR7 ligands are required for development of experimental autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells.
    Kuwabara T, Ishikawa F, Yasuda T, Aritomi K, Nakano H, Tanaka Y, Okada Y, Lipp M, Kakiuchi T.
    J Immunol; 2009 Aug 15; 183(4):2513-21. PubMed ID: 19625643
    [Abstract] [Full Text] [Related]

  • 29. Fulminant experimental autoimmune encephalo-myelitis induced by retrovirally mediated TCR gene transfer.
    Stolzer AL, Sadelain M, Sant'Angelo DB.
    Eur J Immunol; 2005 Jun 15; 35(6):1822-30. PubMed ID: 15909313
    [Abstract] [Full Text] [Related]

  • 30. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells.
    Ellestad KK, Tsutsui S, Noorbakhsh F, Warren KG, Yong VW, Pittman QJ, Power C.
    J Immunol; 2009 Jul 01; 183(1):298-309. PubMed ID: 19542441
    [Abstract] [Full Text] [Related]

  • 31. Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis.
    Xu W, Fazekas G, Hara H, Tabira T.
    J Neuroimmunol; 2005 Jun 01; 163(1-2):24-30. PubMed ID: 15885305
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis.
    van Zwam M, Huizinga R, Heijmans N, van Meurs M, Wierenga-Wolf AF, Melief MJ, Hintzen RQ, 't Hart BA, Amor S, Boven LA, Laman JD.
    J Pathol; 2009 Mar 01; 217(4):543-51. PubMed ID: 19023878
    [Abstract] [Full Text] [Related]

  • 36. Adoptive transfer of myelin basic protein-induced experimental autoimmune encephalomyelitis between SJL and B10.S mice: correlation of priming milieus with susceptibility and resistance phenotypes.
    Chen F, Shaw MK, Li J, Lisak RP, Tse HY.
    J Neuroimmunol; 2006 Apr 01; 173(1-2):146-54. PubMed ID: 16480778
    [Abstract] [Full Text] [Related]

  • 37. Active suppression induced by repetitive self-epitopes protects against EAE development.
    Puentes F, Dickhaut K, Hofstätter M, Falk K, Rötzschke O.
    PLoS One; 2013 Apr 01; 8(5):e64888. PubMed ID: 23738007
    [Abstract] [Full Text] [Related]

  • 38. The thymus plays a role in oral tolerance induction in experimental autoimmune encephalomyelitis.
    Song F, Gienapp IE, Shawler T, Guan Z, Whitacre CC.
    Ann N Y Acad Sci; 2004 Dec 01; 1029():402-4. PubMed ID: 15681792
    [Abstract] [Full Text] [Related]

  • 39. Demyelination caused by the copper chelator cuprizone halts T cell mediated autoimmune neuroinflammation.
    Maña P, Fordham SA, Staykova MA, Correcha M, Silva D, Willenborg DO, Liñares D.
    J Neuroimmunol; 2009 May 29; 210(1-2):13-21. PubMed ID: 19344958
    [Abstract] [Full Text] [Related]

  • 40. Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis.
    Nakano K, Higashi T, Hashimoto K, Takagi R, Tanaka Y, Matsushita S.
    Biochem Biophys Res Commun; 2008 Aug 22; 373(2):286-91. PubMed ID: 18558081
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.