These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 18432623

  • 1. Using support vector machine to predict beta- and gamma-turns in proteins.
    Hu X, Li Q.
    J Comput Chem; 2008 Sep; 29(12):1867-75. PubMed ID: 18432623
    [Abstract] [Full Text] [Related]

  • 2. Prediction of pi-turns in proteins using PSI-BLAST profiles and secondary structure information.
    Wang Y, Xue ZD, Shi XH, Xu J.
    Biochem Biophys Res Commun; 2006 Sep 01; 347(3):574-80. PubMed ID: 16844090
    [Abstract] [Full Text] [Related]

  • 3. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H, Raghava GP.
    Bioinformatics; 2004 Nov 01; 20(16):2751-8. PubMed ID: 15145798
    [Abstract] [Full Text] [Related]

  • 4. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment.
    Kaur H, Raghava GP.
    Protein Sci; 2003 May 01; 12(5):923-9. PubMed ID: 12717015
    [Abstract] [Full Text] [Related]

  • 5. gamma-Turn types prediction in proteins using the support vector machines.
    Jahandideh S, Sarvestani AS, Abdolmaleki P, Jahandideh M, Barfeie M.
    J Theor Biol; 2007 Dec 21; 249(4):785-90. PubMed ID: 17936305
    [Abstract] [Full Text] [Related]

  • 6. Prediction of β-turn types in protein by using composite vector.
    Shi X, Hu X, Li S, Liu X.
    J Theor Biol; 2011 Oct 07; 286(1):24-30. PubMed ID: 21781975
    [Abstract] [Full Text] [Related]

  • 7. Better prediction of the location of alpha-turns in proteins with support vector machine.
    Wang Y, Xue Z, Xu J.
    Proteins; 2006 Oct 01; 65(1):49-54. PubMed ID: 16894602
    [Abstract] [Full Text] [Related]

  • 8. Prediction and analysis of beta-turns in proteins by support vector machine.
    Pham TH, Satou K, Ho TB.
    Genome Inform; 2003 Oct 01; 14():196-205. PubMed ID: 15706534
    [Abstract] [Full Text] [Related]

  • 9. Improved method for predicting beta-turn using support vector machine.
    Zhang Q, Yoon S, Welsh WJ.
    Bioinformatics; 2005 May 15; 21(10):2370-4. PubMed ID: 15797917
    [Abstract] [Full Text] [Related]

  • 10. Using predicted shape string to enhance the accuracy of γ-turn prediction.
    Zhu Y, Li T, Li D, Zhang Y, Xiong W, Sun J, Tang Z, Chen G.
    Amino Acids; 2012 May 15; 42(5):1749-55. PubMed ID: 21424809
    [Abstract] [Full Text] [Related]

  • 11. Prediction of turn types in protein structure by machine-learning classifiers.
    Meissner M, Koch O, Klebe G, Schneider G.
    Proteins; 2009 Feb 01; 74(2):344-52. PubMed ID: 18618702
    [Abstract] [Full Text] [Related]

  • 12. Support vector machines for the classification and prediction of beta-turn types.
    Cai YD, Liu XJ, Xu XB, Chou KC.
    J Pept Sci; 2002 Jul 01; 8(7):297-301. PubMed ID: 12148778
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods.
    Natt NK, Kaur H, Raghava GP.
    Proteins; 2004 Jul 01; 56(1):11-8. PubMed ID: 15162482
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Using support vector machines for prediction of protein structural classes based on discrete wavelet transform.
    Qiu JD, Luo SH, Huang JH, Liang RP.
    J Comput Chem; 2009 Jun 01; 30(8):1344-50. PubMed ID: 19009604
    [Abstract] [Full Text] [Related]

  • 17. Recognition of beta-hairpin motifs in proteins by using the composite vector.
    Hu XZ, Li QZ, Wang CL.
    Amino Acids; 2010 Mar 01; 38(3):915-21. PubMed ID: 19418016
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.