These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 18433137

  • 1. Effect of dephytinization and follow-on formula addition on in vitro iron, calcium, and zinc availability from infant cereals.
    Frontela C, Haro JF, Ros G, Martínez C.
    J Agric Food Chem; 2008 May 28; 56(10):3805-11. PubMed ID: 18433137
    [Abstract] [Full Text] [Related]

  • 2. Influence of components of infant formulas on in vitro iron, zinc, and calcium availability.
    Drago SR, Valencia ME.
    J Agric Food Chem; 2004 May 19; 52(10):3202-7. PubMed ID: 15137876
    [Abstract] [Full Text] [Related]

  • 3. Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability.
    Sanz-Penella JM, Frontela C, Ros G, Martinez C, Monedero V, Haros M.
    J Agric Food Chem; 2012 Nov 28; 60(47):11787-92. PubMed ID: 23151205
    [Abstract] [Full Text] [Related]

  • 4. Do thickening properties of locust bean gum affect the amount of calcium, iron and zinc available for absorption from infant formula? In vitro studies.
    Bosscher D, Van Caillie-Bertrand M, Deelstra H.
    Int J Food Sci Nutr; 2003 Jul 28; 54(4):261-8. PubMed ID: 12850887
    [Abstract] [Full Text] [Related]

  • 5. Iron and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin, and fiber contents.
    Lestienne I, Besançon P, Caporiccio B, Lullien-Péllerin V, Tréche S.
    J Agric Food Chem; 2005 Apr 20; 53(8):3240-7. PubMed ID: 15826084
    [Abstract] [Full Text] [Related]

  • 6. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.
    Liang J, Han BZ, Nout MJ, Hamer RJ.
    Int J Food Sci Nutr; 2010 Feb 20; 61(1):40-51. PubMed ID: 19919509
    [Abstract] [Full Text] [Related]

  • 7. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model.
    Frontela C, Scarino ML, Ferruzza S, Ros G, Martínez C.
    World J Gastroenterol; 2009 Apr 28; 15(16):1977-84. PubMed ID: 19399930
    [Abstract] [Full Text] [Related]

  • 8. Bioaccessibility of calcium, iron and zinc from three legume samples.
    Sahuquillo A, Barberá R, Farré R.
    Nahrung; 2003 Dec 28; 47(6):438-41. PubMed ID: 14727775
    [Abstract] [Full Text] [Related]

  • 9. Bioavailability of calcium from milk-based formulas and fruit juices containing milk and cereals estimated by in vitro methods (solubility, dialyzability, and uptake and transport by caco-2 cells).
    Perales S, Barberá R, Lagarda MJ, Farré R.
    J Agric Food Chem; 2005 May 04; 53(9):3721-6. PubMed ID: 15853426
    [Abstract] [Full Text] [Related]

  • 10. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains.
    Hemalatha S, Platel K, Srinivasan K.
    Eur J Clin Nutr; 2007 Mar 04; 61(3):342-8. PubMed ID: 16969377
    [Abstract] [Full Text] [Related]

  • 11. Influence of exogenous iron, calcium, protein and common salt on the bioaccessibility of zinc from cereals and legumes.
    Hemalatha S, Gautam S, Platel K, Srinivasan K.
    J Trace Elem Med Biol; 2009 Mar 04; 23(2):75-83. PubMed ID: 19398054
    [Abstract] [Full Text] [Related]

  • 12. Fortification of milk with calcium: effect on calcium bioavailability and interactions with iron and zinc.
    Perales S, Barberá R, Lagarda MJ, Farré R.
    J Agric Food Chem; 2006 Jun 28; 54(13):4901-6. PubMed ID: 16787046
    [Abstract] [Full Text] [Related]

  • 13. Evaluation of the simultaneous effects of processing parameters on the iron and zinc solubility of infant sorghum porridge by response surface methodology.
    Kayodé AP, Nout MJ, Bakker EJ, Van Boekel MA.
    J Agric Food Chem; 2006 Jun 14; 54(12):4253-9. PubMed ID: 16756354
    [Abstract] [Full Text] [Related]

  • 14. In vitro availability of calcium, iron, and zinc from first-age infant formulae and human milk.
    Bosscher D, Van Caillie-Bertrand M, Robberecht H, Van Dyck K, Van Cauwenbergh R, Deelstra H.
    J Pediatr Gastroenterol Nutr; 2001 Jan 14; 32(1):54-8. PubMed ID: 11176326
    [Abstract] [Full Text] [Related]

  • 15. Influence of food acidulants on bioaccessibility of zinc and iron from selected food grains.
    Hemalatha S, Platel K, Srinivasan K.
    Mol Nutr Food Res; 2005 Oct 14; 49(10):950-6. PubMed ID: 16189798
    [Abstract] [Full Text] [Related]

  • 16. Bioavailability in infants of iron from infant cereals: effect of dephytinization.
    Davidsson L, Galan P, Cherouvrier F, Kastenmayer P, Juillerat MA, Hercberg S, Hurrell RF.
    Am J Clin Nutr; 1997 Apr 14; 65(4):916-20. PubMed ID: 9094872
    [Abstract] [Full Text] [Related]

  • 17. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS, Bailey KB, Gibbs M, Ferguson EL.
    Food Nutr Bull; 2010 Jun 14; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [Abstract] [Full Text] [Related]

  • 18. Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: a comparison study.
    Etcheverry P, Wallingford JC, Miller DD, Glahn RP.
    J Dairy Sci; 2004 Nov 14; 87(11):3629-37. PubMed ID: 15483146
    [Abstract] [Full Text] [Related]

  • 19. Phytic acid degradation as a means of improving iron absorption.
    Hurrell RF.
    Int J Vitam Nutr Res; 2004 Nov 14; 74(6):445-52. PubMed ID: 15743020
    [Abstract] [Full Text] [Related]

  • 20. Absorption of calcium, zinc, and iron from breast milk by five- to seven-month-old infants.
    Abrams SA, Wen J, Stuff JE.
    Pediatr Res; 1997 Mar 14; 41(3):384-90. PubMed ID: 9078540
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.