These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
263 related items for PubMed ID: 18444012
21. Transport and deposition of ultrafine particles in the upper tracheobronchial tree: a comparative study between approximate and realistic respiratory tract models. Dong J, Li J, Tian L, Tu J. Comput Methods Biomech Biomed Engin; 2021 Aug; 24(10):1125-1135. PubMed ID: 33410725 [Abstract] [Full Text] [Related]
22. Particle transport and deposition correlation with near-wall flow characteristic under inspiratory airflow in lung airways. Farghadan A, Poorbahrami K, Jalal S, Oakes JM, Coletti F, Arzani A. Comput Biol Med; 2020 May; 120():103703. PubMed ID: 32217283 [Abstract] [Full Text] [Related]
23. Assessing Airflow Sensitivity to Healthy and Diseased Lung Conditions in a Computational Fluid Dynamics Model Validated In Vitro. Sul B, Oppito Z, Jayasekera S, Vanger B, Zeller A, Morris M, Ruppert K, Altes T, Rakesh V, Day S, Robinson R, Reifman J, Wallqvist A. J Biomech Eng; 2018 May 01; 140(5):. PubMed ID: 29305603 [Abstract] [Full Text] [Related]
24. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns. Kadota K, Inoue N, Matsunaga Y, Takemiya T, Kubo K, Imano H, Uchiyama H, Tozuka Y. J Pharm Pharmacol; 2020 Jan 01; 72(1):17-28. PubMed ID: 31713883 [Abstract] [Full Text] [Related]
25. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model. Zhang Z, Kleinstreuer C, Kim CS. Ann Biomed Eng; 2008 Dec 01; 36(12):2095-110. PubMed ID: 18850271 [Abstract] [Full Text] [Related]
26. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways. Kleinstreuer C, Zhang Z. J Biomech Eng; 2009 Feb 01; 131(2):021007. PubMed ID: 19102566 [Abstract] [Full Text] [Related]
27. Analysis of flow field and turbulence predictions in a lung model applying RANS and implications for particle deposition. Sommerfeld M, Sgrott OL, Taborda MA, Koullapis P, Bauer K, Kassinos S. Eur J Pharm Sci; 2021 Nov 01; 166():105959. PubMed ID: 34324962 [Abstract] [Full Text] [Related]
28. Flow and particle deposition patterns in a realistic human double bifurcation airway model. Choi LT, Tu JY, Li HF, Thien F. Inhal Toxicol; 2007 Feb 01; 19(2):117-31. PubMed ID: 17169859 [Abstract] [Full Text] [Related]
29. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application. Kolanjiyil AV, Kleinstreuer C, Sadikot RT. Comput Biol Med; 2017 May 01; 84():247-253. PubMed ID: 27836120 [Abstract] [Full Text] [Related]
30. Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models. Walters DK, Luke WH. J Biomech Eng; 2011 Jan 01; 133(1):011003. PubMed ID: 21186893 [Abstract] [Full Text] [Related]
31. Particle and inhalation exposure in human and monkey computational airway models. Lu Phuong N, Dang Khoa N, Inthavong K, Ito K. Inhal Toxicol; 2018 Jan 01; 30(11-12):416-428. PubMed ID: 30618352 [Abstract] [Full Text] [Related]
32. CFPD simulation of magnetic drug delivery to a human lung using an SAW nebulizer. Mohammadian M, Pourmehran O. Biomech Model Mechanobiol; 2019 Jun 01; 18(3):547-562. PubMed ID: 30506148 [Abstract] [Full Text] [Related]
33. Topological analysis of particle transport in lung airways: Predicting particle source and destination. Farghadan A, Coletti F, Arzani A. Comput Biol Med; 2019 Dec 01; 115():103497. PubMed ID: 31630028 [Abstract] [Full Text] [Related]
34. Effects of temporally varying inlet conditions on flow and particle deposition in the small bronchial tubes. Soni B, Thompson D. Int J Numer Method Biomed Eng; 2012 Sep 01; 28(9):915-36. PubMed ID: 22941923 [Abstract] [Full Text] [Related]
35. Three-dimensional model for aerosol transport and deposition in expanding and contracting alveoli. Balásházy I, Hofmann W, Farkas A, Madas BG. Inhal Toxicol; 2008 Apr 01; 20(6):611-21. PubMed ID: 18444013 [Abstract] [Full Text] [Related]
36. Analysis of lobar differences in particle deposition in the human lung. Subramaniam RP, Asgharian B, Freijer JI, Miller FJ, Anjilvel S. Inhal Toxicol; 2003 Jan 01; 15(1):1-21. PubMed ID: 12476357 [Abstract] [Full Text] [Related]
37. Computational fluid-particle dynamics modeling of ultrafine to coarse particles deposition in the human respiratory system, down to the terminal bronchiole. Khoa ND, Li S, Phuong NL, Kuga K, Yabuuchi H, Kan-O K, Matsumoto K, Ito K. Comput Methods Programs Biomed; 2023 Jul 01; 237():107589. PubMed ID: 37167881 [Abstract] [Full Text] [Related]
38. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Elcner J, Lizal F, Jedelsky J, Jicha M, Chovancova M. Biomech Model Mechanobiol; 2016 Apr 01; 15(2):447-69. PubMed ID: 26163996 [Abstract] [Full Text] [Related]
39. Particle deposition in a CT-scanned human lung airway. Luo HY, Liu Y. J Biomech; 2009 Aug 25; 42(12):1869-76. PubMed ID: 19493531 [Abstract] [Full Text] [Related]
40. Euler-Lagrange Prediction of Diesel-Exhaust Polydisperse Particle Transport and Deposition in Lung: Anatomy and Turbulence Effects. Islam MS, Saha SC, Gemci T, Yang IA, Sauret E, Ristovski Z, Gu YT. Sci Rep; 2019 Aug 27; 9(1):12423. PubMed ID: 31455817 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]