These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


861 related items for PubMed ID: 18445216

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Habituation to repeated restraint stress is associated with lack of stress-induced c-fos expression in primary sensory processing areas of the rat brain.
    Girotti M, Pace TW, Gaylord RI, Rubin BA, Herman JP, Spencer RL.
    Neuroscience; 2006; 138(4):1067-81. PubMed ID: 16431027
    [Abstract] [Full Text] [Related]

  • 3. St John's wort, hypericin, and imipramine: a comparative analysis of mRNA levels in brain areas involved in HPA axis control following short-term and long-term administration in normal and stressed rats.
    Butterweck V, Winterhoff H, Herkenham M.
    Mol Psychiatry; 2001 Sep; 6(5):547-64. PubMed ID: 11526469
    [Abstract] [Full Text] [Related]

  • 4. Hypo-response of the hypothalamic-pituitary-adrenocortical axis after an ethanol challenge in prenatally stressed adolescent male rats.
    Van Waes V, Enache M, Dutriez I, Lesage J, Morley-Fletcher S, Vinner E, Lhermitte M, Vieau D, Maccari S, Darnaudéry M.
    Eur J Neurosci; 2006 Aug; 24(4):1193-200. PubMed ID: 16925589
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The role of the hippocampal mineralocorticoid and glucocorticoid receptors in the hypothalamo-pituitary-adrenal axis of the aged Fisher rat.
    Morano MI, Vázquez DM, Akil H.
    Mol Cell Neurosci; 1994 Oct; 5(5):400-12. PubMed ID: 7820364
    [Abstract] [Full Text] [Related]

  • 8. Limited brain diffusion of the glucocorticoid receptor agonist RU28362 following i.c.v. administration: implications for i.c.v. drug delivery and glucocorticoid negative feedback in the hypothalamic-pituitary-adrenal axis.
    Francis AB, Pace TW, Ginsberg AB, Rubin BA, Spencer RL.
    Neuroscience; 2006 Sep 01; 141(3):1503-15. PubMed ID: 16806720
    [Abstract] [Full Text] [Related]

  • 9. Analysis of the anxiolytic-like effect of TRH and the response of amygdalar TRHergic neurons in anxiety.
    Gutiérrez-Mariscal M, de Gortari P, López-Rubalcava C, Martínez A, Joseph-Bravo P.
    Psychoneuroendocrinology; 2008 Feb 01; 33(2):198-213. PubMed ID: 18079066
    [Abstract] [Full Text] [Related]

  • 10. The nociceptin/orphanin FQ antagonist UFP-101 differentially modulates the glucocorticoid response to restraint stress in rats during the peak and nadir phases of the hypothalamo-pituitary-adrenal axis circadian rhythm.
    Leggett JD, Jessop DS, Fulford AJ.
    Neuroscience; 2007 Jul 13; 147(3):757-64. PubMed ID: 17574767
    [Abstract] [Full Text] [Related]

  • 11. Effects of a single footshock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats.
    Louvart H, Maccari S, Lesage J, Léonhardt M, Dickes-Coopman A, Darnaudéry M.
    Psychoneuroendocrinology; 2006 Jan 13; 31(1):92-9. PubMed ID: 16081221
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Limbic and HPA axis function in an animal model of chronic neuropathic pain.
    Ulrich-Lai YM, Xie W, Meij JT, Dolgas CM, Yu L, Herman JP.
    Physiol Behav; 2006 Jun 15; 88(1-2):67-76. PubMed ID: 16647726
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Characterization of central and peripheral components of the hypothalamus-pituitary-adrenal axis in the inbred Roman rat strains.
    Carrasco J, Márquez C, Nadal R, Tobeña A, Fernández-Teruel A, Armario A.
    Psychoneuroendocrinology; 2008 May 15; 33(4):437-45. PubMed ID: 18276081
    [Abstract] [Full Text] [Related]

  • 16. Strain differences in anxiety-like behavior: association with corticotropin-releasing factor.
    Shepard JD, Myers DA.
    Behav Brain Res; 2008 Jan 25; 186(2):239-45. PubMed ID: 17904655
    [Abstract] [Full Text] [Related]

  • 17. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates.
    Ladd CO, Thrivikraman KV, Huot RL, Plotsky PM.
    Psychoneuroendocrinology; 2005 Jul 25; 30(6):520-33. PubMed ID: 15808921
    [Abstract] [Full Text] [Related]

  • 18. Androgen inhibits, while oestrogen enhances, restraint-induced activation of neuropeptide neurones in the paraventricular nucleus of the hypothalamus.
    Lund TD, Munson DJ, Haldy ME, Handa RJ.
    J Neuroendocrinol; 2004 Mar 25; 16(3):272-8. PubMed ID: 15049858
    [Abstract] [Full Text] [Related]

  • 19. Bioactive compounds from Paecilomyces tenuipes regulating the function of the hypothalamo-hypophyseal system axis in chronic unpredictable stress rats.
    Yin YY, Ming L, Zheng LF, Kan HW, Li CR, Li WP.
    Chin Med J (Engl); 2007 Jun 20; 120(12):1088-92. PubMed ID: 17637227
    [Abstract] [Full Text] [Related]

  • 20. Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions.
    Aguilar-Valles A, Sánchez E, de Gortari P, Balderas I, Ramírez-Amaya V, Bermúdez-Rattoni F, Joseph-Bravo P.
    Neuroendocrinology; 2005 Jun 20; 82(5-6):306-19. PubMed ID: 16721035
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 44.