These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Atypical cohesin-dockerin complex responsible for cell surface attachment of cellulosomal components: binding fidelity, promiscuity, and structural buttresses. Salama-Alber O, Jobby MK, Chitayat S, Smith SP, White BA, Shimon LJW, Lamed R, Frolow F, Bayer EA. J Biol Chem; 2013 Jun 07; 288(23):16827-16838. PubMed ID: 23580648 [Abstract] [Full Text] [Related]
43. Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules. Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Shoham Y, Lamed R, Bayer EA. Proteomics; 2008 Mar 07; 8(5):968-79. PubMed ID: 18219699 [Abstract] [Full Text] [Related]
44. The cohesin module is a major determinant of cellulosome mechanical stability. Galera-Prat A, Moraïs S, Vazana Y, Bayer EA, Carrión-Vázquez M. J Biol Chem; 2018 May 11; 293(19):7139-7147. PubMed ID: 29567834 [Abstract] [Full Text] [Related]
45. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. Xu Q, Gao W, Ding SY, Kenig R, Shoham Y, Bayer EA, Lamed R. J Bacteriol; 2003 Aug 11; 185(15):4548-57. PubMed ID: 12867464 [Abstract] [Full Text] [Related]
46. Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium-binding domain. Lytle BL, Volkman BF, Westler WM, Heckman MP, Wu JH. J Mol Biol; 2001 Mar 30; 307(3):745-53. PubMed ID: 11273698 [Abstract] [Full Text] [Related]
47. Single-molecule dissection of the high-affinity cohesin-dockerin complex. Stahl SW, Nash MA, Fried DB, Slutzki M, Barak Y, Bayer EA, Gaub HE. Proc Natl Acad Sci U S A; 2012 Dec 11; 109(50):20431-6. PubMed ID: 23188794 [Abstract] [Full Text] [Related]
48. Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. Adams JJ, Webb BA, Spencer HL, Smith SP. Biochemistry; 2005 Feb 15; 44(6):2173-82. PubMed ID: 15697243 [Abstract] [Full Text] [Related]
49. Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum. Levi Hevroni B, Moraïs S, Ben-David Y, Morag E, Bayer EA. mBio; 2020 Mar 31; 11(2):. PubMed ID: 32234813 [Abstract] [Full Text] [Related]
50. Single versus dual-binding conformations in cellulosomal cohesin-dockerin complexes. Nash MA, Smith SP, Fontes CM, Bayer EA. Curr Opin Struct Biol; 2016 Oct 31; 40():89-96. PubMed ID: 27579515 [Abstract] [Full Text] [Related]
51. Unusual binding properties of the dockerin module of Clostridium thermocellum endoglucanase CelJ (Cel9D-Cel44A). Sakka K, Kishino Y, Sugihara Y, Jindou S, Sakka M, Inagaki M, Kimura T, Sakka K. FEMS Microbiol Lett; 2009 Nov 31; 300(2):249-55. PubMed ID: 19811541 [Abstract] [Full Text] [Related]
52. Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications. Craig SJ, Foong FC, Nordon R. J Biotechnol; 2006 Jan 24; 121(2):165-73. PubMed ID: 16111782 [Abstract] [Full Text] [Related]
53. Dual binding in cohesin-dockerin complexes: the energy landscape and the role of short, terminal segments of the dockerin module. Wojciechowski M, Różycki B, Huy PDQ, Li MS, Bayer EA, Cieplak M. Sci Rep; 2018 Mar 22; 8(1):5051. PubMed ID: 29568013 [Abstract] [Full Text] [Related]
54. Self-assembled amyloid-like oligomeric-cohesin Scaffoldin for augmented protein display on the saccharomyces cerevisiae cell surface. Han Z, Zhang B, Wang YE, Zuo YY, Su WW. Appl Environ Microbiol; 2012 May 22; 78(9):3249-55. PubMed ID: 22344635 [Abstract] [Full Text] [Related]
55. Purification, crystallization and preliminary X-ray characterization of the Acetivibrio cellulolyticus type I cohesin ScaC in complex with the ScaB dockerin. Cameron K, Alves VD, Bule P, Ferreira LM, Fontes CM, Najmudin S. Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Sep 01; 68(Pt 9):1030-3. PubMed ID: 22949188 [Abstract] [Full Text] [Related]
56. Structural insights into the mechanism of formation of cellulosomes probed by small angle X-ray scattering. Hammel M, Fierobe HP, Czjzek M, Finet S, Receveur-Bréchot V. J Biol Chem; 2004 Dec 31; 279(53):55985-94. PubMed ID: 15502162 [Abstract] [Full Text] [Related]
57. Cellulosome from Clostridium cellulolyticum: molecular study of the Dockerin/Cohesin interaction. Fierobe HP, Pagès S, Bélaïch A, Champ S, Lexa D, Bélaïch JP. Biochemistry; 1999 Sep 28; 38(39):12822-32. PubMed ID: 10504252 [Abstract] [Full Text] [Related]
58. Probing the mechanism of cellulosome attachment to the Clostridium thermocellum cell surface: computer simulation of the Type II cohesin-dockerin complex and its variants. Xu J, Smith JC. Protein Eng Des Sel; 2010 Oct 28; 23(10):759-68. PubMed ID: 20682763 [Abstract] [Full Text] [Related]
59. Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of Clostridium thermocellum. Barth A, Hendrix J, Fried D, Barak Y, Bayer EA, Lamb DC. Proc Natl Acad Sci U S A; 2018 Nov 27; 115(48):E11274-E11283. PubMed ID: 30429330 [Abstract] [Full Text] [Related]
60. Overexpression, purification, crystallization and preliminary X-ray characterization of the fourth scaffoldin A cohesin from Acetivibrio cellulolyticus in complex with a dockerin from a family 5 glycoside hydrolase. Bule P, Correia A, Cameron K, Alves VD, Cardoso V, Fontes CM, Najmudin S. Acta Crystallogr F Struct Biol Commun; 2014 Aug 27; 70(Pt 8):1065-7. PubMed ID: 25084383 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]