These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
396 related items for PubMed ID: 18447533
1. Novel in situ setup to study the formation of nanoparticles in the gas phase by small angle x-ray scattering. Shyjumon I, Rappolt M, Sartori B, Amenitsch H, Laggner P. Rev Sci Instrum; 2008 Apr; 79(4):043905. PubMed ID: 18447533 [Abstract] [Full Text] [Related]
2. Mesostructured silica aerosol particles: comparison of gas-phase and powder deposit X-ray diffraction data. Shyjumon I, Rappolt M, Sartori B, Cacho-Nerin F, Grenci G, Laggner P, Amenitsch H. Langmuir; 2011 May 03; 27(9):5542-8. PubMed ID: 21466238 [Abstract] [Full Text] [Related]
3. New reactor dedicated to in operando studies of model catalysts by means of surface x-ray diffraction and grazing incidence small angle x-ray scattering. Saint-Lager MC, Bailly A, Dolle P, Baudoing-Savois R, Taunier P, Garaudée S, Cuccaro S, Douillet S, Geaymond O, Perroux G, Tissot O, Micha JS, Ulrich O, Rieutord F. Rev Sci Instrum; 2007 Aug 03; 78(8):083902. PubMed ID: 17764330 [Abstract] [Full Text] [Related]
4. Monolayer/bilayer transition in Langmuir films of derivatized gold nanoparticles at the gas/water interface: an x-ray scattering study. Fukuto M, Heilmann RK, Pershan PS, Badia A, Lennox RB. J Chem Phys; 2004 Feb 15; 120(7):3446-59. PubMed ID: 15268502 [Abstract] [Full Text] [Related]
5. Digital ion trap mass spectrometer for probing the structure of biological macromolecules by gas phase X-ray scattering. McCullough BJ, Entwistle A, Konishi I, Buffey S, Hasnain SS, Brancia FL, Grossmann JG, Gaskell SJ. Anal Chem; 2009 May 01; 81(9):3392-7. PubMed ID: 19354287 [Abstract] [Full Text] [Related]
6. Real-time tracking of superparamagnetic nanoparticle self-assembly. Siffalovic P, Majkova E, Chitu L, Jergel M, Luby S, Capek I, Satka A, Timmann A, Roth SV. Small; 2008 Dec 01; 4(12):2222-8. PubMed ID: 19003821 [Abstract] [Full Text] [Related]
7. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF, Kraehnert R. J Am Chem Soc; 2010 Feb 03; 132(4):1296-301. PubMed ID: 20102229 [Abstract] [Full Text] [Related]
8. Small-angle pump-probe studies of photoexcited nanoparticles. Plech A, Kotaidis V, Istomin K, Wulff M. J Synchrotron Radiat; 2007 May 03; 14(Pt 3):288-94. PubMed ID: 17435305 [Abstract] [Full Text] [Related]
9. Performance of the micro-PIC gaseous area detector in small-angle X-ray scattering experiments. Hattori K, Tsuchiya K, Ito K, Okada Y, Fujii K, Kubo H, Miuchi K, Takata M, Tanimori T, Uekusa H. J Synchrotron Radiat; 2009 Mar 03; 16(Pt 2):231-6. PubMed ID: 19240335 [Abstract] [Full Text] [Related]
10. Small angle X-ray scattering analysis of the effect of cold compaction of Al/MoO3 thermite composites. Hammons JA, Wang W, Ilavsky J, Pantoya ML, Weeks BL, Vaughn MW. Phys Chem Chem Phys; 2008 Jan 07; 10(1):193-9. PubMed ID: 18075699 [Abstract] [Full Text] [Related]
11. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Bunjes H, Unruh T. Adv Drug Deliv Rev; 2007 Jul 10; 59(6):379-402. PubMed ID: 17658653 [Abstract] [Full Text] [Related]
12. Free jet micromixer to study fast chemical reactions by small angle X-ray scattering. Marmiroli B, Grenci G, Cacho-Nerin F, Sartori B, Ferrari E, Laggner P, Businaro L, Amenitsch H. Lab Chip; 2009 Jul 21; 9(14):2063-9. PubMed ID: 19568676 [Abstract] [Full Text] [Related]
13. Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. Polte J, Erler R, Thünemann AF, Sokolov S, Ahner TT, Rademann K, Emmerling F, Kraehnert R. ACS Nano; 2010 Feb 23; 4(2):1076-82. PubMed ID: 20088602 [Abstract] [Full Text] [Related]
14. Superparamagnetic maghemite nanorods: analysis by coupling field-flow fractionation and small-angle X-ray scattering. Thünemann AF, Kegel J, Polte J, Emmerling F. Anal Chem; 2008 Aug 01; 80(15):5905-11. PubMed ID: 18611040 [Abstract] [Full Text] [Related]
15. Biological systems as nanoreactors: anomalous small-angle scattering study of the CdS nanoparticle formation in multilamellar vesicles. Bóta A, Varga Z, Goerigk G. J Phys Chem B; 2007 Mar 01; 111(8):1911-5. PubMed ID: 17269821 [Abstract] [Full Text] [Related]
16. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles. Goswami D, Medda SK, De G. ACS Appl Mater Interfaces; 2011 Sep 01; 3(9):3440-7. PubMed ID: 21823656 [Abstract] [Full Text] [Related]
18. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot and TiO2 nanoparticles. Setyan A, Sauvain JJ, Rossi MJ. Phys Chem Chem Phys; 2009 Aug 07; 11(29):6205-17. PubMed ID: 19606331 [Abstract] [Full Text] [Related]
19. Thermal quenching sample chamber for grazing incidence small angle x-ray scattering studies of polymer films. Singh MA, Groves MN, Müller MS, Stahlbrand IJ, Smilgies DM. Rev Sci Instrum; 2007 Nov 07; 78(11):113910. PubMed ID: 18052491 [Abstract] [Full Text] [Related]