These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
209 related items for PubMed ID: 18448432
1. Identification of a new motif required for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): the RRRY motif is necessary for the binding of single-stranded DNA substrate and the template strand of the mismatched duplex. Kukreti P, Singh K, Ketkar A, Modak MJ. J Biol Chem; 2008 Jun 27; 283(26):17979-90. PubMed ID: 18448432 [Abstract] [Full Text] [Related]
2. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K, Modak MJ. Biochemistry; 2005 Jun 07; 44(22):8101-10. PubMed ID: 15924429 [Abstract] [Full Text] [Related]
3. Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. de Vega M, Lazaro JM, Salas M, Blanco L. EMBO J; 1996 Mar 01; 15(5):1182-92. PubMed ID: 8605889 [Abstract] [Full Text] [Related]
5. Interaction of Escherichia coli DNA polymerase I with azidoDNA and fluorescent DNA probes: identification of protein-DNA contacts. Catalano CE, Allen DJ, Benkovic SJ. Biochemistry; 1990 Apr 17; 29(15):3612-21. PubMed ID: 2187527 [Abstract] [Full Text] [Related]
6. Presence of 18-A long hydrogen bond track in the active site of Escherichia coli DNA polymerase I (Klenow fragment). Its requirement in the stabilization of enzyme-template-primer complex. Singh K, Modak MJ. J Biol Chem; 2003 Mar 28; 278(13):11289-302. PubMed ID: 12522214 [Abstract] [Full Text] [Related]
7. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Cowart M, Gibson KJ, Allen DJ, Benkovic SJ. Biochemistry; 1989 Mar 07; 28(5):1975-83. PubMed ID: 2541768 [Abstract] [Full Text] [Related]
9. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE, Millar DP. Biochemistry; 1998 Feb 17; 37(7):1898-904. PubMed ID: 9485315 [Abstract] [Full Text] [Related]
10. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase. Abdus Sattar AK, Lin TC, Jones C, Konigsberg WH. Biochemistry; 1996 Dec 24; 35(51):16621-9. PubMed ID: 8987997 [Abstract] [Full Text] [Related]
15. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase. Beechem JM, Otto MR, Bloom LB, Eritja R, Reha-Krantz LJ, Goodman MF. Biochemistry; 1998 Jul 14; 37(28):10144-55. PubMed ID: 9665720 [Abstract] [Full Text] [Related]
16. Mutations in the spacer region of Drosophila mitochondrial DNA polymerase affect DNA binding, processivity, and the balance between Pol and Exo function. Luo N, Kaguni LS. J Biol Chem; 2005 Jan 28; 280(4):2491-7. PubMed ID: 15537632 [Abstract] [Full Text] [Related]
17. Functional importance of bacteriophage phi29 DNA polymerase residue Tyr148 in primer-terminus stabilisation at the 3'-5' exonuclease active site. Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M. J Mol Biol; 2009 Sep 04; 391(5):797-807. PubMed ID: 19576228 [Abstract] [Full Text] [Related]
18. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding. Bailey MF, Van der Schans EJ, Millar DP. Biochemistry; 2007 Jul 10; 46(27):8085-99. PubMed ID: 17567151 [Abstract] [Full Text] [Related]