These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
275 related items for PubMed ID: 18449354
1. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression. Posner M, Hawke M, Lacava C, Prince CJ, Bellanco NR, Corbin RW. Mol Vis; 2008 Apr 25; 14():806-14. PubMed ID: 18449354 [Abstract] [Full Text] [Related]
3. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract. Robertson LJ, David LL, Riviere MA, Wilmarth PA, Muir MS, Morton JD. Invest Ophthalmol Vis Sci; 2008 Mar 25; 49(3):1016-22. PubMed ID: 18326725 [Abstract] [Full Text] [Related]
4. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo. Srivastava OP, Srivastava K. Mol Vis; 2003 Dec 08; 9():644-56. PubMed ID: 14685148 [Abstract] [Full Text] [Related]
5. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish. Lin YR, Mok HK, Wu YH, Liang SS, Hsiao CC, Huang CH, Chiou SH. Mol Vis; 2013 Dec 08; 19():623-37. PubMed ID: 23559856 [Abstract] [Full Text] [Related]
6. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V, Srivastava OP, Kirk M. Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670 [Abstract] [Full Text] [Related]
7. Lens proteome map and alpha-crystallin profile of the catfish Rita rita. Mohanty BP, Bhattacharjee S, Das MK. Indian J Biochem Biophys; 2011 Feb 14; 48(1):35-41. PubMed ID: 21469600 [Abstract] [Full Text] [Related]
8. Crystallin distribution patterns in concentric layers from toad eye lenses. Keenan J, Elia G, Dunn MJ, Orr DF, Pierscionek BK. Proteomics; 2009 Dec 14; 9(23):5340-9. PubMed ID: 19813212 [Abstract] [Full Text] [Related]
9. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats. Kopylova LV, Cherepanov IV, Snytnikova OA, Rumyantseva YV, Kolosova NG, Tsentalovich YP, Sagdeev RZ. Mol Vis; 2011 Dec 14; 17():1457-67. PubMed ID: 21677790 [Abstract] [Full Text] [Related]
10. Comparative analysis of crystallins and lipids from the lens of Antarctic toothfish and cow. Kiss AJ, Devries AL, Morgan-Kiss RM. J Comp Physiol B; 2010 Oct 14; 180(7):1019-32. PubMed ID: 20490507 [Abstract] [Full Text] [Related]
11. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens. Wang L, Liu D, Liu P, Yu Y. Mol Vis; 2011 Oct 14; 17():3423-36. PubMed ID: 22219638 [Abstract] [Full Text] [Related]
12. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone. Wang L, Zhao WC, Yin XL, Ge JY, Bu ZG, Ge HY, Meng QF, Liu P. Mol Biosyst; 2012 Mar 14; 8(3):888-901. PubMed ID: 22269969 [Abstract] [Full Text] [Related]
13. Patterns of crystallin distribution in porcine eye lenses. Keenan J, Orr DF, Pierscionek BK. Mol Vis; 2008 Jul 04; 14():1245-53. PubMed ID: 18615203 [Abstract] [Full Text] [Related]
14. Lens growth and protein changes in the eastern grey kangaroo. Augusteyn RC. Mol Vis; 2011 Jul 04; 17():3234-42. PubMed ID: 22194649 [Abstract] [Full Text] [Related]
15. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells. Wang X, Garcia CM, Shui YB, Beebe DC. Invest Ophthalmol Vis Sci; 2004 Oct 04; 45(10):3608-19. PubMed ID: 15452068 [Abstract] [Full Text] [Related]
16. Effect of Asp 96 isomerization on the properties of a lens αB-crystallin-derived short peptide. Takata T, Fujii N. J Pharm Biomed Anal; 2015 Dec 10; 116():139-44. PubMed ID: 26188790 [Abstract] [Full Text] [Related]
17. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation. Kim I, Saito T, Fujii N, Kanamoto T, Fujii N. Amino Acids; 2016 Dec 10; 48(12):2855-2866. PubMed ID: 27600614 [Abstract] [Full Text] [Related]
18. Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age. Ueda Y, Duncan MK, David LL. Invest Ophthalmol Vis Sci; 2002 Jan 10; 43(1):205-15. PubMed ID: 11773033 [Abstract] [Full Text] [Related]
19. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function. Takata T, Nakamura-Hirota T, Inoue R, Morishima K, Sato N, Sugiyama M, Fujii N. FEBS J; 2018 Jun 10; 285(12):2263-2277. PubMed ID: 29676852 [Abstract] [Full Text] [Related]
20. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice. Ji Y, Bi H, Li N, Jin H, Yang P, Kong X, Yan S, Lu Y. Mol Vis; 2010 Jun 11; 16():1068-75. PubMed ID: 20596256 [Abstract] [Full Text] [Related] Page: [Next] [New Search]