These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


713 related items for PubMed ID: 18450579

  • 1. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.
    Kawashima N, Nozaki D, Abe MO, Nakazawa K.
    J Neurophysiol; 2008 Jun; 99(6):2946-55. PubMed ID: 18450579
    [Abstract] [Full Text] [Related]

  • 2. Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons.
    Kawashima N, Nozaki D, Abe MO, Akai M, Nakazawa K.
    J Neurophysiol; 2005 Feb; 93(2):777-85. PubMed ID: 15385590
    [Abstract] [Full Text] [Related]

  • 3. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury.
    Dobkin BH, Harkema S, Requejo P, Edgerton VR.
    J Neurol Rehabil; 1995 Feb; 9(4):183-90. PubMed ID: 11539274
    [Abstract] [Full Text] [Related]

  • 4. Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta).
    Courtine G, Roy RR, Raven J, Hodgson J, McKay H, Yang H, Zhong H, Tuszynski MH, Edgerton VR.
    Brain; 2005 Oct; 128(Pt 10):2338-58. PubMed ID: 16049043
    [Abstract] [Full Text] [Related]

  • 5. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.
    Grasso R, Ivanenko YP, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V, Lacquaniti F.
    Brain; 2004 May; 127(Pt 5):1019-34. PubMed ID: 14988161
    [Abstract] [Full Text] [Related]

  • 6. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G, Blanc Y, Jeltsch W, Zäch GA.
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [Abstract] [Full Text] [Related]

  • 7. Tendon reflexes for predicting movement recovery after acute spinal cord injury in humans.
    Calancie B, Molano MR, Broton JG.
    Clin Neurophysiol; 2004 Oct; 115(10):2350-63. PubMed ID: 15351378
    [Abstract] [Full Text] [Related]

  • 8. Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity.
    Calancie B, Alexeeva N, Broton JG, Molano MR.
    Clin Neurophysiol; 2005 Jan; 116(1):75-86. PubMed ID: 15589186
    [Abstract] [Full Text] [Related]

  • 9. EMG for assessing the recovery of voluntary movement after acute spinal cord injury in man.
    Calancie B, Molano MR, Broton JG.
    Clin Neurophysiol; 2004 Aug; 115(8):1748-59. PubMed ID: 15261853
    [Abstract] [Full Text] [Related]

  • 10. Neuronal function in chronic spinal cord injury: divergence between locomotor and flexion- and H-reflex activity.
    Müller R, Dietz V.
    Clin Neurophysiol; 2006 Jul; 117(7):1499-507. PubMed ID: 16690351
    [Abstract] [Full Text] [Related]

  • 11. Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects.
    Ivanenko YP, Poppele RE, Lacquaniti F.
    Brain Res Bull; 2009 Jan 15; 78(1):13-21. PubMed ID: 19070781
    [Abstract] [Full Text] [Related]

  • 12. The effect of arm movements on the lower limb during gait after a stroke.
    Stephenson JL, De Serres SJ, Lamontagne A.
    Gait Posture; 2010 Jan 15; 31(1):109-15. PubMed ID: 19854654
    [Abstract] [Full Text] [Related]

  • 13. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA, Gorassini MA.
    J Neurophysiol; 2006 Apr 15; 95(4):2580-9. PubMed ID: 16407422
    [Abstract] [Full Text] [Related]

  • 14. Modulation of coordinated muscle activity during imposed sinusoidal hip movements in human spinal cord injury.
    Steldt RE, Schmit BD.
    J Neurophysiol; 2004 Aug 15; 92(2):673-85. PubMed ID: 15044520
    [Abstract] [Full Text] [Related]

  • 15. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures.
    Dietz V, Müller R.
    Brain; 2004 Oct 15; 127(Pt 10):2221-31. PubMed ID: 15269117
    [Abstract] [Full Text] [Related]

  • 16. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism?
    Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M.
    Brain; 2009 Aug 15; 132(Pt 8):2196-205. PubMed ID: 19460795
    [Abstract] [Full Text] [Related]

  • 17. Effects of limb exercise after spinal cord injury on motor neuron dendrite structure.
    Gazula VR, Roberts M, Luzzio C, Jawad AF, Kalb RG.
    J Comp Neurol; 2004 Aug 16; 476(2):130-45. PubMed ID: 15248194
    [Abstract] [Full Text] [Related]

  • 18. Occurrence of limb movement during sleep in rats with spinal cord injury.
    Esteves AM, de Mello MT, Lancellotti CL, Natal CL, Tufik S.
    Brain Res; 2004 Aug 13; 1017(1-2):32-8. PubMed ID: 15261096
    [Abstract] [Full Text] [Related]

  • 19. Comparison of two methods for quantitative assessment of unrestrained locomotion in the rat.
    Majczyński H, Maleszak K, Górska T, Sławińska U.
    J Neurosci Methods; 2007 Jul 30; 163(2):197-207. PubMed ID: 17418901
    [Abstract] [Full Text] [Related]

  • 20. Effects of multijoint spastic reflexes of the legs during assisted bilateral hip oscillations in human spinal cord injury.
    Onushko T, Hyngstrom A, Schmit BD.
    Arch Phys Med Rehabil; 2010 Aug 30; 91(8):1225-35. PubMed ID: 20684903
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.