These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


445 related items for PubMed ID: 18452341

  • 1. Molecular dynamic investigation of the interaction of supported affinity ligands with monoclonal antibodies.
    Zamolo L, Busini V, Moiani D, Moscatelli D, Cavallotti C.
    Biotechnol Prog; 2008; 24(3):527-39. PubMed ID: 18452341
    [Abstract] [Full Text] [Related]

  • 2. Experimental and theoretical investigation of effect of spacer arm and support matrix of synthetic affinity chromatographic materials for the purification of monoclonal antibodies.
    Zamolo L, Salvalaglio M, Cavallotti C, Galarza B, Sadler C, Williams S, Hofer S, Horak J, Lindner W.
    J Phys Chem B; 2010 Jul 29; 114(29):9367-80. PubMed ID: 20590137
    [Abstract] [Full Text] [Related]

  • 3. Molecular modeling of protein A affinity chromatography.
    Salvalaglio M, Zamolo L, Busini V, Moscatelli D, Cavallotti C.
    J Chromatogr A; 2009 Dec 11; 1216(50):8678-86. PubMed ID: 19423117
    [Abstract] [Full Text] [Related]

  • 4. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM, ter Laak AM, Jongejan A, Vermeulen NP, Wamelink M, Geerke D, Meerman JH.
    J Med Chem; 2004 Feb 12; 47(4):1018-30. PubMed ID: 14761204
    [Abstract] [Full Text] [Related]

  • 5. Understanding ligand-protein interactions in affinity membrane chromatography for antibody purification.
    Boi C, Busini V, Salvalaglio M, Cavallotti C, Sarti GC.
    J Chromatogr A; 2009 Dec 11; 1216(50):8687-96. PubMed ID: 19535082
    [Abstract] [Full Text] [Related]

  • 6. Affinity purification of IgG monoclonal antibodies using the D-PAM synthetic ligand: chromatographic comparison with protein A and thermodynamic investigation of the D-PAM/IgG interaction.
    D'Agostino B, Bellofiore P, De Martino T, Punzo C, Rivieccio V, Verdoliva A.
    J Immunol Methods; 2008 Apr 20; 333(1-2):126-38. PubMed ID: 18313690
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Structural characterization of a Protein A mimetic peptide dendrimer bound to human IgG.
    Moiani D, Salvalaglio M, Cavallotti C, Bujacz A, Redzynia I, Bujacz G, Dinon F, Pengo P, Fassina G.
    J Phys Chem B; 2009 Dec 17; 113(50):16268-75. PubMed ID: 19924842
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L, Liang S, Pilcher MM, Meroueh SO.
    Protein Eng Des Sel; 2009 Sep 17; 22(9):575-86. PubMed ID: 19643976
    [Abstract] [Full Text] [Related]

  • 11. Rational design of peptide ligand for affinity chromatography of tissue-type plasminogen activator by the combination of docking and molecular dynamics simulations.
    Liu FF, Dong XY, Wang T, Sun Y.
    J Chromatogr A; 2007 Dec 21; 1175(2):249-58. PubMed ID: 17996243
    [Abstract] [Full Text] [Related]

  • 12. Binding of antifusion peptides with HIVgp41 from molecular dynamics simulations: quantitative correlation with experiment.
    Strockbine B, Rizzo RC.
    Proteins; 2007 May 15; 67(3):630-42. PubMed ID: 17335007
    [Abstract] [Full Text] [Related]

  • 13. Linear interaction energy models for beta-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms.
    Tounge BA, Rajamani R, Baxter EW, Reitz AB, Reynolds CH.
    J Mol Graph Model; 2006 May 15; 24(6):475-84. PubMed ID: 16293430
    [Abstract] [Full Text] [Related]

  • 14. What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations?
    Wang W, Wang J, Kollman PA.
    Proteins; 1999 Feb 15; 34(3):395-402. PubMed ID: 10024025
    [Abstract] [Full Text] [Related]

  • 15. Rational design of affinity peptide ligand by flexible docking simulation.
    Liu FF, Wang T, Dong XY, Sun Y.
    J Chromatogr A; 2007 Mar 30; 1146(1):41-50. PubMed ID: 17298835
    [Abstract] [Full Text] [Related]

  • 16. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody.
    Laitinen T, Kankare JA, Peräkylä M.
    Proteins; 2004 Apr 01; 55(1):34-43. PubMed ID: 14997538
    [Abstract] [Full Text] [Related]

  • 17. High resolution fast quantitative docking using Fourier domain correlation techniques.
    Blom NS, Sygusch J.
    Proteins; 1997 Apr 01; 27(4):493-506. PubMed ID: 9141130
    [Abstract] [Full Text] [Related]

  • 18. Binding constant determination of high-affinity protein-ligand complexes by electrospray ionization mass spectrometry and ligand competition.
    Wortmann A, Jecklin MC, Touboul D, Badertscher M, Zenobi R.
    J Mass Spectrom; 2008 May 01; 43(5):600-8. PubMed ID: 18074334
    [Abstract] [Full Text] [Related]

  • 19. Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex.
    Cui Q, Sulea T, Schrag JD, Munger C, Hung MN, Naïm M, Cygler M, Purisima EO.
    J Mol Biol; 2008 Jun 13; 379(4):787-802. PubMed ID: 18479705
    [Abstract] [Full Text] [Related]

  • 20. Engineering protein A affinity chromatography.
    Jungbauer A, Hahn R.
    Curr Opin Drug Discov Devel; 2004 Mar 13; 7(2):248-56. PubMed ID: 15603260
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.