These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


220 related items for PubMed ID: 18456895

  • 1. Size matters: diversity in swimbladders and Weberian ossicles affects hearing in catfishes.
    Lechner W, Ladich F.
    J Exp Biol; 2008 May; 211(Pt 10):1681-9. PubMed ID: 18456895
    [Abstract] [Full Text] [Related]

  • 2. Peripheral Hearing Structures in Fishes: Diversity and Sensitivity of Catfishes and Cichlids.
    Ladich F.
    Adv Exp Med Biol; 2016 May; 877():321-40. PubMed ID: 26515321
    [Abstract] [Full Text] [Related]

  • 3. Ontogenetic development of weberian ossicles and hearing abilities in the African bullhead catfish.
    Lechner W, Heiss E, Schwaha T, Glösmann M, Ladich F.
    PLoS One; 2011 Apr 12; 6(4):e18511. PubMed ID: 21533262
    [Abstract] [Full Text] [Related]

  • 4. Does the hearing sensitivity in thorny catfishes depend on swim bladder morphology?
    Zebedin A, Ladich F.
    PLoS One; 2013 Apr 12; 8(6):e67049. PubMed ID: 23825615
    [Abstract] [Full Text] [Related]

  • 5. Acoustic communication and the evolution of hearing in fishes.
    Ladich F.
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep 29; 355(1401):1285-8. PubMed ID: 11079416
    [Abstract] [Full Text] [Related]

  • 6. Hearing in catfishes: 200 years of research.
    Ladich F.
    Fish Fish (Oxf); 2023 Jul 29; 24(4):618-634. PubMed ID: 38505404
    [Abstract] [Full Text] [Related]

  • 7. Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni.
    Lechner W, Wysocki LE, Ladich F.
    BMC Biol; 2010 Jan 29; 8():10. PubMed ID: 20113466
    [Abstract] [Full Text] [Related]

  • 8. Development of the acoustically evoked behavioral response in zebrafish to pure tones.
    Zeddies DG, Fay RR.
    J Exp Biol; 2005 Apr 29; 208(Pt 7):1363-72. PubMed ID: 15781896
    [Abstract] [Full Text] [Related]

  • 9. Sound-generating and -detecting motor system in catfish: design of swimbladder muscles in doradids and pimelodids.
    Ladich F.
    Anat Rec; 2001 Jul 01; 263(3):297-306. PubMed ID: 11455539
    [Abstract] [Full Text] [Related]

  • 10. Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic Sea.
    Wysocki LE, Codarin A, Ladich F, Picciulin M.
    J Acoust Soc Am; 2009 Oct 01; 126(4):2100-7. PubMed ID: 19813819
    [Abstract] [Full Text] [Related]

  • 11. Did auditory sensitivity and vocalization evolve independently in otophysan fishes?
    Ladich F.
    Brain Behav Evol; 1999 Oct 01; 53(5-6):288-304. PubMed ID: 10473905
    [Abstract] [Full Text] [Related]

  • 12. How does tripus extirpation affect auditory sensitivity in goldfish?
    Ladich F, Wysocki LE.
    Hear Res; 2003 Aug 01; 182(1-2):119-29. PubMed ID: 12948607
    [Abstract] [Full Text] [Related]

  • 13. The influence of ambient temperature and thermal acclimation on hearing in a eurythermal and a stenothermal otophysan fish.
    Wysocki LE, Montey K, Popper AN.
    J Exp Biol; 2009 Oct 01; 212(19):3091-9. PubMed ID: 19749101
    [Abstract] [Full Text] [Related]

  • 14. Relationship between swim bladder morphology and hearing abilities--a case study on Asian and African cichlids.
    Schulz-Mirbach T, Metscher B, Ladich F.
    PLoS One; 2012 Oct 01; 7(8):e42292. PubMed ID: 22879934
    [Abstract] [Full Text] [Related]

  • 15. Sound production and spectral hearing sensitivity in the Hawaiian sergeant damselfish, Abudefduf abdominalis.
    Maruska KP, Boyle KS, Dewan LR, Tricas TC.
    J Exp Biol; 2007 Nov 01; 210(Pt 22):3990-4004. PubMed ID: 17981867
    [Abstract] [Full Text] [Related]

  • 16. Auditory steady-state responses to bone conduction stimuli in children with hearing loss.
    Swanepoel de W, Ebrahim S, Friedland P, Swanepoel A, Pottas L.
    Int J Pediatr Otorhinolaryngol; 2008 Dec 01; 72(12):1861-71. PubMed ID: 18963045
    [Abstract] [Full Text] [Related]

  • 17. Pressure and particle motion detection thresholds in fish: a re-examination of salient auditory cues in teleosts.
    Radford CA, Montgomery JC, Caiger P, Higgs DM.
    J Exp Biol; 2012 Oct 01; 215(Pt 19):3429-35. PubMed ID: 22693030
    [Abstract] [Full Text] [Related]

  • 18. Morphological variation in the Weberian apparatus of Cypriniformes.
    Bird NC, Hernandez LP.
    J Morphol; 2007 Sep 01; 268(9):739-57. PubMed ID: 17591731
    [Abstract] [Full Text] [Related]

  • 19. The inner ear morphology and hearing abilities of the Paddlefish (Polyodon spathula) and the Lake Sturgeon (Acipenser fulvescens).
    Lovell JM, Findlay MM, Moate RM, Nedwell JR, Pegg MA.
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Nov 01; 142(3):286-96. PubMed ID: 16183310
    [Abstract] [Full Text] [Related]

  • 20. Relative size variation of the otoliths, swim bladder, and Weberian apparatus structures in piranhas and pacus (Characiformes: Serrasalmidae) with different ecologies and its implications for the detection of sound stimuli.
    Boyle KS, Herrel A.
    J Morphol; 2018 Dec 01; 279(12):1849-1871. PubMed ID: 30443931
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.