These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


2052 related items for PubMed ID: 18471168

  • 1. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S.
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [Abstract] [Full Text] [Related]

  • 2. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells.
    Venugopal J, Low S, Choon AT, Kumar AB, Ramakrishna S.
    J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970
    [Abstract] [Full Text] [Related]

  • 3. Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration.
    Francis L, Venugopal J, Prabhakaran MP, Thavasi V, Marsano E, Ramakrishna S.
    Acta Biomater; 2010 Oct; 6(10):4100-9. PubMed ID: 20466085
    [Abstract] [Full Text] [Related]

  • 4. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts.
    Gupta D, Venugopal J, Mitra S, Giri Dev VR, Ramakrishna S.
    Biomaterials; 2009 Apr; 30(11):2085-94. PubMed ID: 19167752
    [Abstract] [Full Text] [Related]

  • 5. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering.
    Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S.
    Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900
    [Abstract] [Full Text] [Related]

  • 6. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X.
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [Abstract] [Full Text] [Related]

  • 7. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S.
    Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094
    [Abstract] [Full Text] [Related]

  • 8. Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration.
    Venugopal JR, Giri Dev VR, Senthilram T, Sathiskumar D, Gupta D, Ramakrishna S.
    Cell Biol Int; 2011 Jan; 35(1):73-80. PubMed ID: 20923413
    [Abstract] [Full Text] [Related]

  • 9. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L, Güçeri S, Wen X, Gandhi M, Sun W.
    Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162
    [Abstract] [Full Text] [Related]

  • 10. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S.
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [Abstract] [Full Text] [Related]

  • 11. Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size by rotating multichannel electrospinning.
    Huang YY, Wang DY, Chang LL, Yang YC.
    J Biomater Sci Polym Ed; 2010 Nov; 21(11):1503-14. PubMed ID: 20534198
    [Abstract] [Full Text] [Related]

  • 12. Apatite-mineralized polycaprolactone nanofibrous web as a bone tissue regeneration substrate.
    Yu HS, Jang JH, Kim TI, Lee HH, Kim HW.
    J Biomed Mater Res A; 2009 Mar 01; 88(3):747-54. PubMed ID: 18357562
    [Abstract] [Full Text] [Related]

  • 13. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A, Collins G, Arinzeh TL.
    Acta Biomater; 2010 Jan 01; 6(1):90-101. PubMed ID: 19631769
    [Abstract] [Full Text] [Related]

  • 14. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J, Yu X.
    Acta Biomater; 2010 Aug 01; 6(8):3004-12. PubMed ID: 20144749
    [Abstract] [Full Text] [Related]

  • 15. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells.
    Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P.
    J Biomed Mater Res A; 2010 Jul 01; 94(1):241-51. PubMed ID: 20166220
    [Abstract] [Full Text] [Related]

  • 16. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process.
    Heo SJ, Kim SE, Wei J, Hyun YT, Yun HS, Kim DH, Shin JW, Shin JW.
    J Biomed Mater Res A; 2009 Apr 01; 89(1):108-16. PubMed ID: 18431758
    [Abstract] [Full Text] [Related]

  • 17. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV, Thomas V, Xu Y, Bellis S, Nyairo E, Dean D.
    Macromol Biosci; 2010 Apr 08; 10(4):433-44. PubMed ID: 20112236
    [Abstract] [Full Text] [Related]

  • 18. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds.
    Jeong SI, Lee AY, Lee YM, Shin H.
    J Biomater Sci Polym Ed; 2008 Apr 08; 19(3):339-57. PubMed ID: 18325235
    [Abstract] [Full Text] [Related]

  • 19. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA, Lee SH, Kim WD.
    Bioprocess Biosyst Eng; 2011 May 08; 34(4):505-13. PubMed ID: 21170553
    [Abstract] [Full Text] [Related]

  • 20. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW, Kim HE, Salih V.
    Biomaterials; 2005 Sep 08; 26(25):5221-30. PubMed ID: 15792549
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 103.