These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
223 related items for PubMed ID: 18479459
41. Excitation energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides. Nagarajan V, Parson WW. Biochemistry; 1997 Feb 25; 36(8):2300-6. PubMed ID: 9047332 [Abstract] [Full Text] [Related]
42. Energy transfer properties of Rhodobacter sphaeroides chromatophores during adaptation to low light intensity. Driscoll B, Lunceford C, Lin S, Woronowicz K, Niederman RA, Woodbury NW. Phys Chem Chem Phys; 2014 Aug 28; 16(32):17133-41. PubMed ID: 25008288 [Abstract] [Full Text] [Related]
43. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus. Harel E. J Chem Phys; 2012 May 07; 136(17):174104. PubMed ID: 22583207 [Abstract] [Full Text] [Related]
44. Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. Siebert CA, Qian P, Fotiadis D, Engel A, Hunter CN, Bullough PA. EMBO J; 2004 Feb 25; 23(4):690-700. PubMed ID: 14765115 [Abstract] [Full Text] [Related]
45. Eukaryotic behaviour of a prokaryotic energy-transducing membrane: fully detached vesicular organelles arise by budding from the Rhodobacter sphaeroides intracytoplasmic photosynthetic membrane. Niederman RA. Mol Microbiol; 2010 May 25; 76(4):803-5. PubMed ID: 20412442 [Abstract] [Full Text] [Related]
46. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM. Oda I, Hirata K, Watanabe S, Shibata Y, Kajino T, Fukushima Y, Iwai S, Itoh S. J Phys Chem B; 2006 Jan 26; 110(3):1114-20. PubMed ID: 16471652 [Abstract] [Full Text] [Related]
47. The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. Scheuring S, Gonçalves RP, Prima V, Sturgis JN. J Mol Biol; 2006 Apr 21; 358(1):83-96. PubMed ID: 16500674 [Abstract] [Full Text] [Related]
48. Structural role of PufX in the dimerization of the photosynthetic core complex of Rhodobacter sphaeroides. Scheuring S, Francia F, Busselez J, Melandri BA, Rigaud JL, Lévy D. J Biol Chem; 2004 Jan 30; 279(5):3620-6. PubMed ID: 14581468 [Abstract] [Full Text] [Related]
49. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Sener MK, Olsen JD, Hunter CN, Schulten K. Proc Natl Acad Sci U S A; 2007 Oct 02; 104(40):15723-8. PubMed ID: 17895378 [Abstract] [Full Text] [Related]
50. Are the light-harvesting I complexes from Rhodospirillum rubrum arranged around the reaction centre in a square geometry? Stahlberg H, Dubochet J, Vogel H, Ghosh R. J Mol Biol; 1998 Oct 02; 282(4):819-31. PubMed ID: 9743629 [Abstract] [Full Text] [Related]
51. Selective recruitment of membrane protein complexes onto gold substrates patterned by dip-pen nanolithography. Valiokas R, Vaitekonis S, Klenkar G, Trinkūnas G, Liedberg B. Langmuir; 2006 Apr 11; 22(8):3456-60. PubMed ID: 16584209 [Abstract] [Full Text] [Related]
52. The architecture of Rhodobacter sphaeroides chromatophores. Scheuring S, Nevo R, Liu LN, Mangenot S, Charuvi D, Boudier T, Prima V, Hubert P, Sturgis JN, Reich Z. Biochim Biophys Acta; 2014 Aug 11; 1837(8):1263-70. PubMed ID: 24685429 [Abstract] [Full Text] [Related]