These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Insulin-stimulated serine and threonine phosphorylation of the human insulin receptor. An assessment of the role of serines 1305/1306 and threonine 1348 by their replacement with neutral or negatively charged amino acids. Tavaré JM, Zhang B, Ellis L, Roth RA. J Biol Chem; 1991 Nov 15; 266(32):21804-9. PubMed ID: 1939203 [Abstract] [Full Text] [Related]
5. Analysis of the order of autophosphorylation of human insulin receptor tyrosines 1158, 1162 and 1163. Dickens M, Tavaré JM. Biochem Biophys Res Commun; 1992 Jul 15; 186(1):244-50. PubMed ID: 1321605 [Abstract] [Full Text] [Related]
7. Insulin-stimulated serine/threonine phosphorylation of the insulin receptor: paucity of threonine 1348 phosphorylation in vitro indicates the involvement of more than one serine/threonine kinase in vivo. Pillay TS, Siddle K. Biochem Biophys Res Commun; 1991 Sep 16; 179(2):962-71. PubMed ID: 1654905 [Abstract] [Full Text] [Related]
12. Substrate phosphorylation catalyzed by the insulin receptor tyrosine kinase. Kinetic correlation to autophosphorylation of specific sites in the beta subunit. Flores-Riveros JR, Sibley E, Kastelic T, Lane MD. J Biol Chem; 1989 Dec 25; 264(36):21557-72. PubMed ID: 2557333 [Abstract] [Full Text] [Related]
13. Identification of Ser-1275 and Ser-1309 as autophosphorylation sites of the insulin receptor. Al-Hasani H, Eisermann B, Tennagels N, Magg C, Passlack W, Koenen M, Müller-Wieland D, Meyer HE, Klein HW. FEBS Lett; 1997 Jan 02; 400(1):65-70. PubMed ID: 9000514 [Abstract] [Full Text] [Related]
14. Analysis of insulin-receptor phosphorylation sites in intact cells by two-dimensional phosphopeptide mapping. Tavaré JM, O'Brien RM, Siddle K, Denton RM. Biochem J; 1988 Aug 01; 253(3):783-8. PubMed ID: 3178737 [Abstract] [Full Text] [Related]
15. Insulin-EGF receptor chimerae mediate tyrosine transphosphorylation and serine/threonine phosphorylation of kinase-deficient EGF receptors. Tartare S, Ballotti R, Lammers R, Alengrin F, Dull T, Schlessinger J, Ullrich A, Van Obberghen E. J Biol Chem; 1991 May 25; 266(15):9900-6. PubMed ID: 1851758 [Abstract] [Full Text] [Related]
16. Replacement of the conserved tyrosine 1210 by phenylalanine in the insulin receptor affects insulin-induced dephosphorylation of focal adhesion kinase but leaves other responses intact. Van der Zon GC, Ouwens DM, Dorrestijn J, Maassen JA. Biochemistry; 1996 Aug 13; 35(32):10377-82. PubMed ID: 8756693 [Abstract] [Full Text] [Related]
18. Insulin activates a 70-kDa S6 kinase through serine/threonine-specific phosphorylation of the enzyme polypeptide. Price DJ, Gunsalus JR, Avruch J. Proc Natl Acad Sci U S A; 1990 Oct 13; 87(20):7944-8. PubMed ID: 2122450 [Abstract] [Full Text] [Related]
19. Threonine 1336 of the human insulin receptor is a major target for phosphorylation by protein kinase C. Lewis RE, Cao L, Perregaux D, Czech MP. Biochemistry; 1990 Feb 20; 29(7):1807-13. PubMed ID: 2110001 [Abstract] [Full Text] [Related]
20. The type II transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner I, Derynck R. J Biol Chem; 1997 Jun 06; 272(23):14850-9. PubMed ID: 9169454 [Abstract] [Full Text] [Related] Page: [Next] [New Search]