These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 18483661

  • 1. [Molecular targets for new drug discovery to treat type 2 diabetes and obesity].
    Bastarrachea RA, Montero JC, Saavedra-Gajardo I, Cerda-Flores R, Machado-Domínguez A, Comuzzie AG.
    Rev Med Chil; 2008 Jan; 136(1):107-17. PubMed ID: 18483661
    [Abstract] [Full Text] [Related]

  • 2. [Pharmaco-proteomic analysis: application of proteomic analysis to the discovery and development of new drugs].
    Chapal N, Laplanche M, Ribes G, Pau B, Garin J, Petit P.
    J Soc Biol; 2002 Jan; 196(4):317-22. PubMed ID: 12645303
    [Abstract] [Full Text] [Related]

  • 3. Current therapies and emerging targets for the treatment of diabetes.
    Wagman AS, Nuss JM.
    Curr Pharm Des; 2001 Apr; 7(6):417-50. PubMed ID: 11281851
    [Abstract] [Full Text] [Related]

  • 4. Thermogenesis and related metabolic targets in anti-diabetic therapy.
    Arch JR.
    Handb Exp Pharmacol; 2011 Apr; (203):201-55. PubMed ID: 21484574
    [Abstract] [Full Text] [Related]

  • 5. GPR119 agonists: a promising new approach for the treatment of type 2 diabetes and related metabolic disorders.
    Shah U.
    Curr Opin Drug Discov Devel; 2009 Jul; 12(4):519-32. PubMed ID: 19562648
    [Abstract] [Full Text] [Related]

  • 6. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus.
    Koren S, Fantus IG.
    Best Pract Res Clin Endocrinol Metab; 2007 Dec; 21(4):621-40. PubMed ID: 18054739
    [Abstract] [Full Text] [Related]

  • 7. Protein tyrosine phosphatase 1B inhibitors for the treatment of type 2 diabetes and obesity: recent advances.
    Harley EA, Levens N.
    Curr Opin Investig Drugs; 2003 Oct; 4(10):1179-89. PubMed ID: 14649209
    [Abstract] [Full Text] [Related]

  • 8. Beta-cell function and mass in type 2 diabetes.
    Larsen MO.
    Dan Med Bull; 2009 Aug; 56(3):153-64. PubMed ID: 19728971
    [Abstract] [Full Text] [Related]

  • 9. Current and investigational antiobesity agents and obesity therapeutic treatment targets.
    Bays HE.
    Obes Res; 2004 Aug; 12(8):1197-211. PubMed ID: 15340100
    [Abstract] [Full Text] [Related]

  • 10. Functional significance of skeletal muscle adiponectin production, changes in animal models of obesity and diabetes, and regulation by rosiglitazone treatment.
    Liu Y, Chewchuk S, Lavigne C, Brûlé S, Pilon G, Houde V, Xu A, Marette A, Sweeney G.
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E657-64. PubMed ID: 19531641
    [Abstract] [Full Text] [Related]

  • 11. Adiponectin and its potential in the treatment of obesity, diabetes and insulin resistance.
    Haluzik M.
    Curr Opin Investig Drugs; 2005 Oct; 6(10):988-93. PubMed ID: 16259219
    [Abstract] [Full Text] [Related]

  • 12. Mouse models of type II diabetes mellitus in drug discovery.
    Baribault H.
    Methods Mol Biol; 2010 Oct; 602():135-55. PubMed ID: 20012397
    [Abstract] [Full Text] [Related]

  • 13. Time to insulin in type-2 diabetes: high hurdles or Santiago way?
    Rotella CM, Pala L.
    Acta Diabetol; 2008 Jun; 45(2):67-74. PubMed ID: 18408882
    [Abstract] [Full Text] [Related]

  • 14. The effects of pharmacologic agents for type 2 diabetes mellitus on body weight.
    Pi-Sunyer FX.
    Postgrad Med; 2008 Jul; 120(2):5-17. PubMed ID: 18654064
    [Abstract] [Full Text] [Related]

  • 15. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats.
    Lee HJ, Lee YH, Park SK, Kang ES, Kim HJ, Lee YC, Choi CS, Park SE, Ahn CW, Cha BS, Lee KW, Kim KS, Lim SK, Lee HC.
    Metabolism; 2009 Aug; 58(8):1170-7. PubMed ID: 19477471
    [Abstract] [Full Text] [Related]

  • 16. Chemically chaperoning the actions of insulin.
    Hansen PA, Waheed A, Corbett JA.
    Trends Endocrinol Metab; 2007 Aug; 18(1):1-3. PubMed ID: 17116401
    [Abstract] [Full Text] [Related]

  • 17. Vanadium salts as insulin substitutes: mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research.
    Sekar N, Li J, Shechter Y.
    Crit Rev Biochem Mol Biol; 1996 Dec; 31(5-6):339-59. PubMed ID: 8994801
    [Abstract] [Full Text] [Related]

  • 18. Interdependence of hepatic lipid and glucose metabolism: novel pharmacological targets for diabetes.
    Lind P.
    Curr Opin Investig Drugs; 2004 Apr; 5(4):395-401. PubMed ID: 15134280
    [Abstract] [Full Text] [Related]

  • 19. Antidiabetic effects of dipeptidyl peptidase-IV inhibitors and sulfonylureas in streptozotocin-nicotinamide-induced mildly diabetic mice.
    Matsuyama-Yokono A, Tahara A, Nakano R, Someya Y, Shiraki K, Hayakawa M, Shibasaki M.
    Metabolism; 2009 Mar; 58(3):379-86. PubMed ID: 19217455
    [Abstract] [Full Text] [Related]

  • 20. G protein-coupled receptors as therapeutic targets for obesity and type 2 diabetes.
    Bjenning C, Al-Shamma H, Thomsen W, Leonard J, Behan D.
    Curr Opin Investig Drugs; 2004 Oct; 5(10):1051-62. PubMed ID: 15535426
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.