These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 18485368
1. Phenytoin protects central axons in experimental autoimmune encephalomyelitis. Black JA, Waxman SG. J Neurol Sci; 2008 Nov 15; 274(1-2):57-63. PubMed ID: 18485368 [Abstract] [Full Text] [Related]
2. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Black JA, Liu S, Hains BC, Saab CY, Waxman SG. Brain; 2006 Dec 15; 129(Pt 12):3196-208. PubMed ID: 16931536 [Abstract] [Full Text] [Related]
3. Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine. Black JA, Liu S, Carrithers M, Carrithers LM, Waxman SG. Ann Neurol; 2007 Jul 15; 62(1):21-33. PubMed ID: 17654737 [Abstract] [Full Text] [Related]
4. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Craner MJ, Damarjian TG, Liu S, Hains BC, Lo AC, Black JA, Newcombe J, Cuzner ML, Waxman SG. Glia; 2005 Jan 15; 49(2):220-9. PubMed ID: 15390090 [Abstract] [Full Text] [Related]
5. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. Lo AC, Saab CY, Black JA, Waxman SG. J Neurophysiol; 2003 Nov 15; 90(5):3566-71. PubMed ID: 12904334 [Abstract] [Full Text] [Related]
6. Tapered withdrawal of phenytoin removes protective effect in EAE without inflammatory rebound and mortality. Liu S, Zwinger P, Black JA, Waxman SG. J Neurol Sci; 2014 Jun 15; 341(1-2):8-12. PubMed ID: 24690348 [Abstract] [Full Text] [Related]
7. Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Brand-Schieber E, Werner P. Exp Neurol; 2004 Sep 15; 189(1):5-9. PubMed ID: 15296830 [Abstract] [Full Text] [Related]
8. Pattern of axonal injury in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Herrero-Herranz E, Pardo LA, Gold R, Linker RA. Neurobiol Dis; 2008 May 15; 30(2):162-73. PubMed ID: 18342527 [Abstract] [Full Text] [Related]
9. Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Garay L, Gonzalez Deniselle MC, Gierman L, Meyer M, Lima A, Roig P, De Nicola AF. Neuroimmunomodulation; 2008 May 15; 15(1):76-83. PubMed ID: 18667803 [Abstract] [Full Text] [Related]
10. Neuroprotection of axons with phenytoin in experimental allergic encephalomyelitis. Lo AC, Black JA, Waxman SG. Neuroreport; 2002 Oct 28; 13(15):1909-12. PubMed ID: 12395089 [Abstract] [Full Text] [Related]
11. Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Wang D, Ayers MM, Catmull DV, Hazelwood LJ, Bernard CC, Orian JM. Glia; 2005 Aug 15; 51(3):235-40. PubMed ID: 15812814 [Abstract] [Full Text] [Related]
12. Amelioration of autoimmune neuroinflammation by recombinant human alpha-fetoprotein. Irony-Tur-Sinai M, Grigoriadis N, Lourbopoulos A, Pinto-Maaravi F, Abramsky O, Brenner T. Exp Neurol; 2006 Mar 15; 198(1):136-44. PubMed ID: 16423348 [Abstract] [Full Text] [Related]
13. Validation of a novel biomarker for acute axonal injury in experimental autoimmune encephalomyelitis. Gresle MM, Shaw G, Jarrott B, Alexandrou EN, Friedhuber A, Kilpatrick TJ, Butzkueven H. J Neurosci Res; 2008 Dec 15; 86(16):3548-55. PubMed ID: 18709652 [Abstract] [Full Text] [Related]
14. Phenytoin at optimum doses ameliorates experimental autoimmune encephalomyelitis via modulation of immunoregulatory cells. Hashiba N, Nagayama S, Araya SI, Inada H, Sonobe Y, Suzumura A, Matsui M. J Neuroimmunol; 2011 Apr 15; 233(1-2):112-9. PubMed ID: 21237519 [Abstract] [Full Text] [Related]
15. FK506 and a nonimmunosuppressant derivative reduce axonal and myelin damage in experimental autoimmune encephalomyelitis: neuroimmunophilin ligand-mediated neuroprotection in a model of multiple sclerosis. Gold BG, Voda J, Yu X, McKeon G, Bourdette DN. J Neurosci Res; 2004 Aug 01; 77(3):367-77. PubMed ID: 15248293 [Abstract] [Full Text] [Related]
16. Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Olechowski CJ, Truong JJ, Kerr BJ. Pain; 2009 Jan 01; 141(1-2):156-64. PubMed ID: 19084337 [Abstract] [Full Text] [Related]
17. Block of a subset of sodium channels exacerbates experimental autoimmune encephalomyelitis. Stevens M, Timmermans S, Bottelbergs A, Hendriks JJ, Brône B, Baes M, Tytgat J. J Neuroimmunol; 2013 Aug 15; 261(1-2):21-8. PubMed ID: 23735284 [Abstract] [Full Text] [Related]
18. VEGF and angiogenesis in acute and chronic MOG((35-55)) peptide induced EAE. Roscoe WA, Welsh ME, Carter DE, Karlik SJ. J Neuroimmunol; 2009 Apr 30; 209(1-2):6-15. PubMed ID: 19233483 [Abstract] [Full Text] [Related]
19. Macrophages and neurodegeneration. Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD. Brain Res Brain Res Rev; 2005 Apr 30; 48(2):185-95. PubMed ID: 15850657 [Abstract] [Full Text] [Related]
20. Pathological findings in rats with experimental allergic encephalomyelitis. Dong M, Liu R, Guo L, Li C, Tan G. APMIS; 2008 Nov 30; 116(11):972-84. PubMed ID: 19132994 [Abstract] [Full Text] [Related] Page: [Next] [New Search]