These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


401 related items for PubMed ID: 18485693

  • 1. DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label.
    Fang C, Agarwal A, Buddharaju KD, Khalid NM, Salim SM, Widjaja E, Garland MV, Balasubramanian N, Kwong DL.
    Biosens Bioelectron; 2008 Oct 15; 24(2):216-21. PubMed ID: 18485693
    [Abstract] [Full Text] [Related]

  • 2. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing.
    Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR.
    Biosens Bioelectron; 2009 Jan 01; 24(5):1531-5. PubMed ID: 19084390
    [Abstract] [Full Text] [Related]

  • 3. Label-free electrochemical detection of DNA using ferrocene-containing cationic polythiophene and PNA probes on nanogold modified electrodes.
    Fang B, Jiao S, Li M, Qu Y, Jiang X.
    Biosens Bioelectron; 2008 Feb 28; 23(7):1175-9. PubMed ID: 18068346
    [Abstract] [Full Text] [Related]

  • 4. Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing.
    Dinish US, Yaw FC, Agarwal A, Olivo M.
    Biosens Bioelectron; 2011 Jan 15; 26(5):1987-92. PubMed ID: 20869866
    [Abstract] [Full Text] [Related]

  • 5. Electrochemical detection of oligonucleotide by attaching redox probes onto its backbone.
    Fang C, Ji H, Karen WY, Rafei SR.
    Biosens Bioelectron; 2011 Jan 15; 26(5):2670-4. PubMed ID: 20400286
    [Abstract] [Full Text] [Related]

  • 6. Nano-patterned SERS substrate: application for protein analysis vs. temperature.
    Das G, Mecarini F, Gentile F, De Angelis F, Mohan Kumar H, Candeloro P, Liberale C, Cuda G, Di Fabrizio E.
    Biosens Bioelectron; 2009 Feb 15; 24(6):1693-9. PubMed ID: 18976899
    [Abstract] [Full Text] [Related]

  • 7. Nanoscale porous silicon waveguide for label-free DNA sensing.
    Rong G, Najmaie A, Sipe JE, Weiss SM.
    Biosens Bioelectron; 2008 May 15; 23(10):1572-6. PubMed ID: 18308536
    [Abstract] [Full Text] [Related]

  • 8. Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform.
    Lo HC, Hsiung HI, Chattopadhyay S, Han HC, Chen CF, Leu JP, Chen KH, Chen LC.
    Biosens Bioelectron; 2011 Jan 15; 26(5):2413-8. PubMed ID: 21044833
    [Abstract] [Full Text] [Related]

  • 9. Electrical detection of oligonucleotide using an aggregate of gold nanoparticles as a conductive tag.
    Fang C, Fan Y, Kong J, Gao Z, Balasubramanian N.
    Anal Chem; 2008 Dec 15; 80(24):9387-94. PubMed ID: 19072259
    [Abstract] [Full Text] [Related]

  • 10. Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection.
    Cattani-Scholz A, Pedone D, Dubey M, Neppl S, Nickel B, Feulner P, Schwartz J, Abstreiter G, Tornow M.
    ACS Nano; 2008 Aug 15; 2(8):1653-60. PubMed ID: 19206369
    [Abstract] [Full Text] [Related]

  • 11. Optimization of label-free DNA detection with electrochemical impedance spectroscopy using PNA probes.
    Keighley SD, Estrela P, Li P, Migliorato P.
    Biosens Bioelectron; 2008 Dec 01; 24(4):912-7. PubMed ID: 18771911
    [Abstract] [Full Text] [Related]

  • 12. Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates.
    Lin DZ, Chen YP, Jhuang PJ, Chu JY, Yeh JT, Wang JK.
    Opt Express; 2011 Feb 28; 19(5):4337-45. PubMed ID: 21369264
    [Abstract] [Full Text] [Related]

  • 13. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry.
    De Jesús MA, Giesfeldt KS, Oran JM, Abu-Hatab NA, Lavrik NV, Sepaniak MJ.
    Appl Spectrosc; 2005 Dec 28; 59(12):1501-8. PubMed ID: 16390590
    [Abstract] [Full Text] [Related]

  • 14. Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle.
    Guieu V, Garrigue P, Lagugné-Labarthet F, Servant L, Sojic N, Talaga D.
    Opt Express; 2009 Dec 21; 17(26):24030-5. PubMed ID: 20052115
    [Abstract] [Full Text] [Related]

  • 15. Resonance scattering detection of trace microalbumin using immunonanogold probe as the catalyst of Fehling reagent-glucose reaction.
    Jiang Z, Huang Y, Liang A, Pan H, Liu Q.
    Biosens Bioelectron; 2009 Feb 15; 24(6):1674-8. PubMed ID: 18835769
    [Abstract] [Full Text] [Related]

  • 16. Paper-based SERS swab for rapid trace detection on real-world surfaces.
    Lee CH, Tian L, Singamaneni S.
    ACS Appl Mater Interfaces; 2010 Dec 15; 2(12):3429-35. PubMed ID: 21128660
    [Abstract] [Full Text] [Related]

  • 17. Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment.
    Ali M, Neumann R, Ensinger W.
    ACS Nano; 2010 Dec 28; 4(12):7267-74. PubMed ID: 21082785
    [Abstract] [Full Text] [Related]

  • 18. Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS).
    Driskell JD, Seto AG, Jones LP, Jokela S, Dluhy RA, Zhao YP, Tripp RA.
    Biosens Bioelectron; 2008 Dec 01; 24(4):923-8. PubMed ID: 18799303
    [Abstract] [Full Text] [Related]

  • 19. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides.
    Bell SE, Sirimuthu NM.
    J Am Chem Soc; 2006 Dec 13; 128(49):15580-1. PubMed ID: 17147354
    [Abstract] [Full Text] [Related]

  • 20. Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics.
    Culha M, Stokes D, Allain LR, Vo-Dinh T.
    Anal Chem; 2003 Nov 15; 75(22):6196-201. PubMed ID: 14616001
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.