These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


788 related items for PubMed ID: 18486963

  • 21. Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite.
    Kiser JR, Manning BA.
    J Hazard Mater; 2010 Feb 15; 174(1-3):167-74. PubMed ID: 19796874
    [Abstract] [Full Text] [Related]

  • 22. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions.
    Jeen SW, Blowes DW, Gillham RW.
    J Contam Hydrol; 2008 Jan 07; 95(1-2):76-91. PubMed ID: 17913283
    [Abstract] [Full Text] [Related]

  • 23. Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron.
    Weng CH, Lin YT, Lin TY, Kao CM.
    J Hazard Mater; 2007 Oct 22; 149(2):292-302. PubMed ID: 17485164
    [Abstract] [Full Text] [Related]

  • 24. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles.
    Geng B, Jin Z, Li T, Qi X.
    Chemosphere; 2009 May 22; 75(6):825-30. PubMed ID: 19217139
    [Abstract] [Full Text] [Related]

  • 25. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron.
    Mak MS, Lo IM.
    Chemosphere; 2011 Jun 22; 84(2):234-40. PubMed ID: 21530997
    [Abstract] [Full Text] [Related]

  • 26. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal.
    Lo IM, Lam CS, Lai KC.
    Water Res; 2006 Feb 22; 40(3):595-605. PubMed ID: 16406049
    [Abstract] [Full Text] [Related]

  • 27. Sonochemical destruction of free and metal-binding ethylenediaminetetraacetic acid.
    Frim JA, Rathman JF, Weavers LK.
    Water Res; 2003 Jul 22; 37(13):3155-63. PubMed ID: 14509702
    [Abstract] [Full Text] [Related]

  • 28. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.
    VanEngelen MR, Peyton BM, Mormile MR, Pinkart HC.
    Biodegradation; 2008 Nov 22; 19(6):841-50. PubMed ID: 18401687
    [Abstract] [Full Text] [Related]

  • 29. The role of iron in hexavalent chromium reduction by municipal landfill leachate.
    Li Y, Low GK, Scott JA, Amal R.
    J Hazard Mater; 2009 Jan 30; 161(2-3):657-62. PubMed ID: 18486329
    [Abstract] [Full Text] [Related]

  • 30. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe).
    Zimmermann AC, Mecabô A, Fagundes T, Rodrigues CA.
    J Hazard Mater; 2010 Jul 15; 179(1-3):192-6. PubMed ID: 20307932
    [Abstract] [Full Text] [Related]

  • 31. Hexavalent chromium removal from near natural water by copper-iron bimetallic particles.
    Hu CY, Lo SL, Liou YH, Hsu YW, Shih K, Lin CJ.
    Water Res; 2010 May 15; 44(10):3101-8. PubMed ID: 20350740
    [Abstract] [Full Text] [Related]

  • 32. Influence of inorganic anion on Cr(VI) photo-reduction in the presence of ferric ion.
    Tzou YM, Hsu CL, Chen CC, Chen JH, Wu JJ, Tseng KJ.
    J Hazard Mater; 2008 Aug 15; 156(1-3):374-80. PubMed ID: 18249065
    [Abstract] [Full Text] [Related]

  • 33. Acceleration of the Fe(III)EDTA(-) reduction rate in BioDeNO(x) reactors by dosing electron mediating compounds.
    Maas Pv, Brink Pv, Klapwijk B, Lens P.
    Chemosphere; 2009 Apr 15; 75(2):243-9. PubMed ID: 18561978
    [Abstract] [Full Text] [Related]

  • 34. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C, Cetin Z, Demiray H.
    J Hazard Mater; 2008 Nov 30; 159(2-3):287-93. PubMed ID: 18387738
    [Abstract] [Full Text] [Related]

  • 35. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents.
    Janos P, Hůla V, Bradnová P, Pilarová V, Sedlbauer J.
    Chemosphere; 2009 May 30; 75(6):732-8. PubMed ID: 19215962
    [Abstract] [Full Text] [Related]

  • 36. Reduction of Cr(VI) by caffeic acid.
    Deiana S, Premoli A, Senette C.
    Chemosphere; 2007 May 30; 67(10):1919-26. PubMed ID: 17240421
    [Abstract] [Full Text] [Related]

  • 37. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J, Chen C, Zhu X, Wang X.
    J Hazard Mater; 2009 Mar 15; 162(2-3):1542-50. PubMed ID: 18650001
    [Abstract] [Full Text] [Related]

  • 38. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants.
    Dos Santos Coelho F, Ardisson JD, Moura FC, Lago RM, Murad E, Fabris JD.
    Chemosphere; 2008 Mar 15; 71(1):90-6. PubMed ID: 18061239
    [Abstract] [Full Text] [Related]

  • 39. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor.
    Lugo-Lugo V, Barrera-Díaz C, Bilyeu B, Balderas-Hernández P, Ureña-Nuñez F, Sánchez-Mendieta V.
    J Hazard Mater; 2010 Apr 15; 176(1-3):418-25. PubMed ID: 20031318
    [Abstract] [Full Text] [Related]

  • 40. Chromate reduction by zero-valent Al metal as catalyzed by polyoxometalate.
    Lin CJ, Wang SL, Huang PM, Tzou YM, Liu JC, Chen CC, Chen JH, Lin C.
    Water Res; 2009 Dec 15; 43(20):5015-22. PubMed ID: 19729183
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 40.