These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Chromium removal using resin supported nanoscale zero-valent iron. Fu F, Ma J, Xie L, Tang B, Han W, Lin S. J Environ Manage; 2013 Oct 15; 128():822-7. PubMed ID: 23867839 [Abstract] [Full Text] [Related]
46. [Treatment of Cr( VI) in deoxygenated simulated groundwater using nanoscale zero-valent iron]. Wu J, Tian XJ, Wang J, Jing CY. Huan Jing Ke Xue; 2010 Mar 15; 31(3):645-52. PubMed ID: 20358821 [Abstract] [Full Text] [Related]
47. Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species. Wang L, Wang N, Zhu L, Yu H, Tang H. J Hazard Mater; 2008 Mar 21; 152(1):93-9. PubMed ID: 17664041 [Abstract] [Full Text] [Related]
48. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium. Jung Y, Choi J, Lee W. Chemosphere; 2007 Aug 21; 68(10):1968-75. PubMed ID: 17400277 [Abstract] [Full Text] [Related]
49. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA. Durante C, Cuscov M, Isse AA, Sandonà G, Gennaro A. Water Res; 2011 Feb 21; 45(5):2122-30. PubMed ID: 21255817 [Abstract] [Full Text] [Related]
50. Enhancing effect of iron on chromate reduction by Cellulomonas flavigena. Xu W, Liu Y, Zeng G, Li X, Tang C, Yuan X. J Hazard Mater; 2005 Nov 11; 126(1-3):17-22. PubMed ID: 16039044 [Abstract] [Full Text] [Related]
51. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide. Brausam A, Maigut J, Meier R, Szilágyi PA, Buschmann HJ, Massa W, Homonnay Z, van Eldik R. Inorg Chem; 2009 Aug 17; 48(16):7864-84. PubMed ID: 19618946 [Abstract] [Full Text] [Related]
55. Speciation of Cr(III) and Cr(VI) in environmental samples by solid phase extraction on Ambersorb 563 resin. Narin I, Surme Y, Soylak M, Dogan M. J Hazard Mater; 2006 Aug 25; 136(3):579-84. PubMed ID: 16442725 [Abstract] [Full Text] [Related]
59. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III). K'Owino IO, Omole MA, Sadik OA. J Environ Monit; 2007 Jul 14; 9(7):657-65. PubMed ID: 17607385 [Abstract] [Full Text] [Related]
60. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: implications for catalytic chromium (VI) treatment. Kantar C. Water Sci Technol; 2016 Jul 14; 74(1):99-109. PubMed ID: 27386987 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]