These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
169 related items for PubMed ID: 18487375
1. Identification and functional characterization of a novel rhodopsin mutation associated with autosomal dominant CSNB. Zeitz C, Gross AK, Leifert D, Kloeckener-Gruissem B, McAlear SD, Lemke J, Neidhardt J, Berger W. Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):4105-14. PubMed ID: 18487375 [Abstract] [Full Text] [Related]
2. p.Gln200Glu, a putative constitutively active mutant of rod alpha-transducin (GNAT1) in autosomal dominant congenital stationary night blindness. Szabo V, Kreienkamp HJ, Rosenberg T, Gal A. Hum Mutat; 2007 Jul; 28(7):741-2. PubMed ID: 17584859 [Abstract] [Full Text] [Related]
8. Coexistence of GNAT1 and ABCA4 variants associated with Nougaret-type congenital stationary night blindness and childhood-onset cone-rod dystrophy. Hayashi T, Hosono K, Kurata K, Katagiri S, Mizobuchi K, Ueno S, Kondo M, Nakano T, Hotta Y. Doc Ophthalmol; 2020 Apr; 140(2):147-157. PubMed ID: 31583501 [Abstract] [Full Text] [Related]
9. A Novel Heterozygous Missense Mutation in GNAT1 Leads to Autosomal Dominant Riggs Type of Congenital Stationary Night Blindness. Zeitz C, Méjécase C, Stévenard M, Michiels C, Audo I, Marmor MF. Biomed Res Int; 2018 Apr; 2018():7694801. PubMed ID: 29850563 [Abstract] [Full Text] [Related]
10. Biallelic Mutations in GNB3 Cause a Unique Form of Autosomal-Recessive Congenital Stationary Night Blindness. Vincent A, Audo I, Tavares E, Maynes JT, Tumber A, Wright T, Li S, Michiels C, GNB3 Consortium, Condroyer C, MacDonald H, Verdet R, Sahel JA, Hamel CP, Zeitz C, Héon E. Am J Hum Genet; 2016 May 05; 98(5):1011-1019. PubMed ID: 27063057 [Abstract] [Full Text] [Related]
11. Different amino acid substitutions at the same position in rhodopsin lead to distinct phenotypes. Neidhardt J, Barthelmes D, Farahmand F, Fleischhauer JC, Berger W. Invest Ophthalmol Vis Sci; 2006 Apr 05; 47(4):1630-5. PubMed ID: 16565402 [Abstract] [Full Text] [Related]
12. A dominant form of congenital stationary night blindness (adCSNB) in a large Chinese family. Liu X, Zhuang S, Hu S, Zhang F, Lin B, Li X, Xu D, Chen SH. Ann Hum Genet; 2005 May 05; 69(Pt 3):315-21. PubMed ID: 15845035 [Abstract] [Full Text] [Related]
13. Novel homozygous in-frame deletion of GNAT1 gene causes golden appearance of fundus and reduced scotopic ERGs similar to that in Oguchi disease in Japanese family. Kubota D, Oishi N, Gocho K, Kikuchi S, Yamaki K, Igarashi T, Takahashi H, Ishida N, Iwata T, Mizota A, Kameya S. Ophthalmic Genet; 2019 Oct 05; 40(5):480-487. PubMed ID: 31696758 [Abstract] [Full Text] [Related]
15. Dark continuous noise from mutant G90D-rhodopsin predominantly underlies congenital stationary night blindness. Chai Z, Ye Y, Silverman D, Rose K, Madura A, Reed RR, Chen J, Yau KW. Proc Natl Acad Sci U S A; 2024 May 21; 121(21):e2404763121. PubMed ID: 38743626 [Abstract] [Full Text] [Related]
17. Dark-light: model for nightblindness from the human rhodopsin Gly-90-->Asp mutation. Sieving PA, Richards JE, Naarendorp F, Bingham EL, Scott K, Alpern M. Proc Natl Acad Sci U S A; 1995 Jan 31; 92(3):880-4. PubMed ID: 7846071 [Abstract] [Full Text] [Related]
19. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Dryja TP, Berson EL, Rao VR, Oprian DD. Nat Genet; 1993 Jul 31; 4(3):280-3. PubMed ID: 8358437 [Abstract] [Full Text] [Related]