These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


287 related items for PubMed ID: 18489083

  • 1. FieldChopper, a new tool for automatic model generation and virtual screening based on molecular fields.
    Kalliokoski T, Ronkko T, Poso A.
    J Chem Inf Model; 2008 Jun; 48(6):1131-7. PubMed ID: 18489083
    [Abstract] [Full Text] [Related]

  • 2. Critical comparison of virtual screening methods against the MUV data set.
    Tiikkainen P, Markt P, Wolber G, Kirchmair J, Distinto S, Poso A, Kallioniemi O.
    J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417
    [Abstract] [Full Text] [Related]

  • 3. Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures.
    Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A.
    Org Biomol Chem; 2004 Nov 21; 2(22):3256-66. PubMed ID: 15534703
    [Abstract] [Full Text] [Related]

  • 4. Predicting antitrichomonal activity: a computational screening using atom-based bilinear indices and experimental proofs.
    Marrero-Ponce Y, Meneses-Marcel A, Castillo-Garit JA, Machado-Tugores Y, Escario JA, Barrio AG, Pereira DM, Nogal-Ruiz JJ, Arán VJ, Martínez-Fernández AR, Torrens F, Rotondo R, Ibarra-Velarde F, Alvarado YJ.
    Bioorg Med Chem; 2006 Oct 01; 14(19):6502-24. PubMed ID: 16875830
    [Abstract] [Full Text] [Related]

  • 5. Considerations in compound database preparation--"hidden" impact on virtual screening results.
    Knox AJ, Meegan MJ, Carta G, Lloyd DG.
    J Chem Inf Model; 2005 Oct 01; 45(6):1908-19. PubMed ID: 16309298
    [Abstract] [Full Text] [Related]

  • 6. Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments.
    Ebalunode JO, Zheng W.
    J Chem Inf Model; 2009 Jun 01; 49(6):1313-20. PubMed ID: 19480404
    [Abstract] [Full Text] [Related]

  • 7. LigMatch: a multiple structure-based ligand matching method for 3D virtual screening.
    Kinnings SL, Jackson RM.
    J Chem Inf Model; 2009 Sep 01; 49(9):2056-66. PubMed ID: 19685924
    [Abstract] [Full Text] [Related]

  • 8. New scoring functions for virtual screening from molecular dynamics simulations with a quantum-refined force-field (QRFF-MD). Application to cyclin-dependent kinase 2.
    Ferrara P, Curioni A, Vangrevelinghe E, Meyer T, Mordasini T, Andreoni W, Acklin P, Jacoby E.
    J Chem Inf Model; 2006 Sep 01; 46(1):254-63. PubMed ID: 16426061
    [Abstract] [Full Text] [Related]

  • 9. A discussion of measures of enrichment in virtual screening: comparing the information content of descriptors with increasing levels of sophistication.
    Bender A, Glen RC.
    J Chem Inf Model; 2005 Sep 01; 45(5):1369-75. PubMed ID: 16180913
    [Abstract] [Full Text] [Related]

  • 10. Ligand-target interaction-based weighting of substructures for virtual screening.
    Crisman TJ, Sisay MT, Bajorath J.
    J Chem Inf Model; 2008 Oct 01; 48(10):1955-64. PubMed ID: 18821751
    [Abstract] [Full Text] [Related]

  • 11. Novel 2D fingerprints for ligand-based virtual screening.
    Ewing T, Baber JC, Feher M.
    J Chem Inf Model; 2006 Oct 01; 46(6):2423-31. PubMed ID: 17125184
    [Abstract] [Full Text] [Related]

  • 12. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site.
    Virtanen SI, Pentikäinen OT.
    J Chem Inf Model; 2010 Jun 28; 50(6):1005-11. PubMed ID: 20504004
    [Abstract] [Full Text] [Related]

  • 13. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods.
    Venkatraman V, Pérez-Nueno VI, Mavridis L, Ritchie DW.
    J Chem Inf Model; 2010 Dec 27; 50(12):2079-93. PubMed ID: 21090728
    [Abstract] [Full Text] [Related]

  • 14. Computer design of bioactive molecules: a method for receptor-based de novo ligand design.
    Moon JB, Howe WJ.
    Proteins; 1991 Dec 27; 11(4):314-28. PubMed ID: 1758885
    [Abstract] [Full Text] [Related]

  • 15. Optimization of the MAD algorithm for virtual screening.
    Eckert H, Bajorath J.
    Methods Mol Biol; 2008 Dec 27; 453():349-62. PubMed ID: 18712313
    [Abstract] [Full Text] [Related]

  • 16. BRUTUS: optimization of a grid-based similarity function for rigid-body molecular superposition. 1. Alignment and virtual screening applications.
    Tervo AJ, Rönkkö T, Nyrönen TH, Poso A.
    J Med Chem; 2005 Jun 16; 48(12):4076-86. PubMed ID: 15943481
    [Abstract] [Full Text] [Related]

  • 17. Novel technologies for virtual screening.
    Lengauer T, Lemmen C, Rarey M, Zimmermann M.
    Drug Discov Today; 2004 Jan 01; 9(1):27-34. PubMed ID: 14761803
    [Abstract] [Full Text] [Related]

  • 18. A new method for in-silico drug screening and similarity search using molecular dynamics maximum volume overlap (MD-MVO) method.
    Fukunishi Y, Nakamura H.
    J Mol Graph Model; 2009 Jan 01; 27(5):628-36. PubMed ID: 19046907
    [Abstract] [Full Text] [Related]

  • 19. Similarity search profiles as a diagnostic tool for the analysis of virtual screening calculations.
    Xue L, Godden JW, Stahura FL, Bajorath J.
    J Chem Inf Comput Sci; 2004 Jan 01; 44(4):1275-81. PubMed ID: 15272835
    [Abstract] [Full Text] [Related]

  • 20. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints.
    Vogt M, Bajorath J.
    Chem Biol Drug Des; 2008 Jan 01; 71(1):8-14. PubMed ID: 18069988
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.