These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


238 related items for PubMed ID: 18491932

  • 1. Thermochromism of bacteriorhodopsin and its pH dependence.
    Neebe M, Rhinow D, Schromczyk N, Hampp NA.
    J Phys Chem B; 2008 Jun 12; 112(23):6946-51. PubMed ID: 18491932
    [Abstract] [Full Text] [Related]

  • 2. Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content.
    Rhinow D, Hampp N.
    J Phys Chem B; 2010 Jan 14; 114(1):549-56. PubMed ID: 19908872
    [Abstract] [Full Text] [Related]

  • 3. Time-resolved titrations of ASP-85 in bacteriorhodopsin: the multicomponent kinetic mechanism.
    Friedman N, Rousso I, Sheves M, Fu X, Bressler S, Druckmann S, Ottolenghi M.
    Biochemistry; 1997 Sep 23; 36(38):11369-80. PubMed ID: 9298956
    [Abstract] [Full Text] [Related]

  • 4. Structure and thermal stability of monomeric bacteriorhodopsin in mixed phospholipid/detergent micelles.
    Brouillette CG, McMichens RB, Stern LJ, Khorana HG.
    Proteins; 1989 Sep 23; 5(1):38-46. PubMed ID: 2748571
    [Abstract] [Full Text] [Related]

  • 5. Bending of purple membranes in dependence on the pH analyzed by AFM and single molecule force spectroscopy.
    Baumann RP, Schranz M, Hampp N.
    Phys Chem Chem Phys; 2010 May 07; 12(17):4329-35. PubMed ID: 20407703
    [Abstract] [Full Text] [Related]

  • 6. Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH.
    Li H, Chen DL, Zhong S, Xu B, Han BS, Hu KS.
    J Phys Chem B; 2005 Jun 09; 109(22):11273-8. PubMed ID: 16852376
    [Abstract] [Full Text] [Related]

  • 7. The pH-dependence of photochemical intermediates of O and P in bacteriorhodopsin by continuous light.
    Wang L, Shen Z, Wang J, Li B, Chen F, Yang W, Feng X.
    Biochem Biophys Res Commun; 2006 May 12; 343(3):899-903. PubMed ID: 16564498
    [Abstract] [Full Text] [Related]

  • 8. Structural change of bacteriorhodopsin in the purple membrane above pH 10 decreases heterogeneity of the irreversible photobleaching components.
    Yokoyama Y, Sonoyama M, Nakano T, Mitaku S.
    J Biochem; 2007 Sep 12; 142(3):325-33. PubMed ID: 17646179
    [Abstract] [Full Text] [Related]

  • 9. Light- and pH-dependent conformational changes in protein structure induce strong bending of purple membranes--active membranes studied by cryo-SEM.
    Rhinow D, Hampp NA.
    J Phys Chem B; 2008 Oct 16; 112(41):13116-20. PubMed ID: 18712918
    [Abstract] [Full Text] [Related]

  • 10. Intramembrane substitutions in helix D of bacteriorhodopsin disrupt the purple membrane.
    Krebs MP, Li W, Halambeck TP.
    J Mol Biol; 1997 Mar 21; 267(1):172-83. PubMed ID: 9096216
    [Abstract] [Full Text] [Related]

  • 11. [Luminescence of bacteriorhodopsin in purple membranes from Halobacterium haolbium cells].
    Sineshchekov VA, Litvin FF.
    Biofizika; 1976 Mar 21; 21(2):313-20. PubMed ID: 1268279
    [Abstract] [Full Text] [Related]

  • 12. Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin.
    de Groot HJ, Smith SO, Courtin J, van den Berg E, Winkel C, Lugtenburg J, Griffin RG, Herzfeld J.
    Biochemistry; 1990 Jul 24; 29(29):6873-83. PubMed ID: 2168744
    [Abstract] [Full Text] [Related]

  • 13. [Effect of temperature and humidity on the electroinduced bathochromic shift in the absorption band of bacteriorhodopsin (Br 570)].
    Lukashev EP, Vozari E, Kononenko AA, Rubin AB.
    Biofizika; 1980 Jul 24; 25(2):351-3. PubMed ID: 7370353
    [Abstract] [Full Text] [Related]

  • 14. Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine.
    Xiao Y, Hutson MS, Belenky M, Herzfeld J, Braiman MS.
    Biochemistry; 2004 Oct 12; 43(40):12809-18. PubMed ID: 15461453
    [Abstract] [Full Text] [Related]

  • 15. Functionally relevant coupled dynamic profile of bacteriorhodopsin and lipids in purple membranes.
    Kamihira M, Watts A.
    Biochemistry; 2006 Apr 04; 45(13):4304-13. PubMed ID: 16566605
    [Abstract] [Full Text] [Related]

  • 16. Changes in the retinal transition dipole moment in bacteriorhodopsin of the purple membrane of Halobacterium Salinarium at the so-called PH(rev).
    Mostafa HI.
    J Biochem Mol Biol Biophys; 2002 Feb 04; 6(1):59-64. PubMed ID: 12186784
    [Abstract] [Full Text] [Related]

  • 17. Low-frequency dynamics of bacteriorhodopsin studied by terahertz time-domain spectroscopy.
    Kawaguchi S, Kambara O, Shibata M, Kandori H, Tominaga K.
    Phys Chem Chem Phys; 2010 Sep 21; 12(35):10255-62. PubMed ID: 20607183
    [Abstract] [Full Text] [Related]

  • 18. Effect of temperature, pH, and metal ion binding on the secondary structure of bacteriorhodopsin: FT-IR study of the melting and premelting transition temperatures.
    Heyes CD, El-Sayed MA.
    Biochemistry; 2001 Oct 02; 40(39):11819-27. PubMed ID: 11570882
    [Abstract] [Full Text] [Related]

  • 19. Sugar-induced blue membrane: release of divalent cations during phase transition of purple membranes observed in sugar-derived glasses.
    Rhinow D, Hampp NA.
    J Phys Chem B; 2008 Apr 17; 112(15):4613-9. PubMed ID: 18358028
    [Abstract] [Full Text] [Related]

  • 20. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y, Sonoyama M, Mitaku S.
    Proteins; 2004 Feb 15; 54(3):442-54. PubMed ID: 14747993
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.