These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


573 related items for PubMed ID: 18505269

  • 1. Living cells of Staphylococcus aureus immobilized onto the capillary surface in electrochromatography: a tool for screening of biofilms.
    Chen J, Fallarero A, Määttänen A, Sandberg M, Peltonen J, Vuorela PM, Riekkola ML.
    Anal Chem; 2008 Jul 01; 80(13):5103-9. PubMed ID: 18505269
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Automating a 96-well microtitre plate model for Staphylococcus aureus biofilms: an approach to screening of natural antimicrobial compounds.
    Sandberg M, Määttänen A, Peltonen J, Vuorela PM, Fallarero A.
    Int J Antimicrob Agents; 2008 Sep 01; 32(3):233-40. PubMed ID: 18640013
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Increased tolerance of Staphylococcus aureus to vancomycin in viscous media.
    Kostenko V, Ceri H, Martinuzzi RJ.
    FEMS Immunol Med Microbiol; 2007 Nov 01; 51(2):277-88. PubMed ID: 17727657
    [Abstract] [Full Text] [Related]

  • 10. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms.
    Singh R, Ray P, Das A, Sharma M.
    J Antimicrob Chemother; 2010 Sep 01; 65(9):1955-8. PubMed ID: 20615927
    [Abstract] [Full Text] [Related]

  • 11. Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm-positive and -negative Staphylococcus epidermidis.
    Knobloch JK, Von Osten H, Horstkotte MA, Rohde H, Mack D.
    Med Microbiol Immunol; 2002 Oct 01; 191(2):107-14. PubMed ID: 12410350
    [Abstract] [Full Text] [Related]

  • 12. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus.
    Stenz L, François P, Fischer A, Huyghe A, Tangomo M, Hernandez D, Cassat J, Linder P, Schrenzel J.
    FEMS Microbiol Lett; 2008 Oct 01; 287(2):149-55. PubMed ID: 18754790
    [Abstract] [Full Text] [Related]

  • 13. Citropin 1.1-treated central venous catheters improve the efficacy of hydrophobic antibiotics in the treatment of experimental staphylococcal catheter-related infection.
    Cirioni O, Giacometti A, Ghiselli R, Kamysz W, Orlando F, Mocchegiani F, Silvestri C, Licci A, Chiodi L, Lukasiak J, Saba V, Scalise G.
    Peptides; 2006 Jun 01; 27(6):1210-6. PubMed ID: 16289474
    [Abstract] [Full Text] [Related]

  • 14. Comparative assessment of the antimicrobial susceptibility of Staphylococcus aureus isolates from bovine mastitis in biofilm versus planktonic culture.
    Melchior MB, Fink-Gremmels J, Gaastra W.
    J Vet Med B Infect Dis Vet Public Health; 2006 Sep 01; 53(7):326-32. PubMed ID: 16930277
    [Abstract] [Full Text] [Related]

  • 15. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom.
    van der Plas MJ, Dambrot C, Dogterom-Ballering HC, Kruithof S, van Dissel JT, Nibbering PH.
    J Antimicrob Chemother; 2010 May 01; 65(5):917-23. PubMed ID: 20189943
    [Abstract] [Full Text] [Related]

  • 16. Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms.
    Toté K, Berghe DV, Deschacht M, de Wit K, Maes L, Cos P.
    Int J Antimicrob Agents; 2009 Jun 01; 33(6):525-31. PubMed ID: 19179053
    [Abstract] [Full Text] [Related]

  • 17. Effect of a solution containing citrate/Methylene Blue/parabens on Staphylococcus aureus bacteria and biofilm, and comparison with various heparin solutions.
    Sauer K, Steczko J, Ash SR.
    J Antimicrob Chemother; 2009 May 01; 63(5):937-45. PubMed ID: 19282330
    [Abstract] [Full Text] [Related]

  • 18. In vitro development of Staphylococcus aureus biofilms using slime-producing variants and ATP-bioluminescence for automated bacterial quantification.
    Gracia E, Fernández A, Conchello P, Alabart JL, Pérez M, Amorena B.
    Luminescence; 1999 May 01; 14(1):23-31. PubMed ID: 10398557
    [Abstract] [Full Text] [Related]

  • 19. Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma.
    Joshi SG, Paff M, Friedman G, Fridman G, Fridman A, Brooks AD.
    Am J Infect Control; 2010 May 01; 38(4):293-301. PubMed ID: 20085853
    [Abstract] [Full Text] [Related]

  • 20. Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase.
    Kwieciński J, Eick S, Wójcik K.
    Int J Antimicrob Agents; 2009 Apr 01; 33(4):343-7. PubMed ID: 19095413
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.