These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
273 related items for PubMed ID: 18512955
1. Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity: toward tailor-made polymer and oligosaccharide products. Hellmuth H, Wittrock S, Kralj S, Dijkhuizen L, Hofer B, Seibel J. Biochemistry; 2008 Jun 24; 47(25):6678-84. PubMed ID: 18512955 [Abstract] [Full Text] [Related]
2. Rational transformation of Lactobacillus reuteri 121 reuteransucrase into a dextransucrase. Kralj S, van Geel-Schutten IG, Faber EJ, van der Maarel MJ, Dijkhuizen L. Biochemistry; 2005 Jun 28; 44(25):9206-16. PubMed ID: 15966745 [Abstract] [Full Text] [Related]
3. Bioengineering of Leuconostoc mesenteroides glucansucrases that gives selected bond formation for glucan synthesis and/or acceptor-product synthesis. Kang HK, Kimura A, Kim D. J Agric Food Chem; 2011 Apr 27; 59(8):4148-55. PubMed ID: 21391600 [Abstract] [Full Text] [Related]
4. Identification of structural determinants for substrate binding and turnover by glucosyltransferase R supports the permutation hypothesis. Swistowska AM, Gronert S, Wittrock S, Collisi W, Hecht HJ, Hofer B. FEBS Lett; 2007 Aug 21; 581(21):4036-42. PubMed ID: 17678897 [Abstract] [Full Text] [Related]
5. Molecular characterization and expression analysis of the glucansucrase DSRWC from Weissella cibaria synthesizing a alpha(1-->6) glucan. Kang HK, Oh JS, Kim D. FEMS Microbiol Lett; 2009 Mar 21; 292(1):33-41. PubMed ID: 19222580 [Abstract] [Full Text] [Related]
6. Residue Leu940 has a crucial role in the linkage and reaction specificity of the glucansucrase GTF180 of the probiotic bacterium Lactobacillus reuteri 180. Meng X, Dobruchowska JM, Pijning T, López CA, Kamerling JP, Dijkhuizen L. J Biol Chem; 2014 Nov 21; 289(47):32773-82. PubMed ID: 25288798 [Abstract] [Full Text] [Related]
7. Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays. Seibel J, Hellmuth H, Hofer B, Kicinska AM, Schmalbruch B. Chembiochem; 2006 Feb 21; 7(2):310-20. PubMed ID: 16416490 [Abstract] [Full Text] [Related]
8. Towards tailor-made oligosaccharides-chemo-enzymatic approaches by enzyme and substrate engineering. Homann A, Seibel J. Appl Microbiol Biotechnol; 2009 May 21; 83(2):209-16. PubMed ID: 19357843 [Abstract] [Full Text] [Related]
9. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. Ito K, Ito S, Shimamura T, Weyand S, Kawarasaki Y, Misaka T, Abe K, Kobayashi T, Cameron AD, Iwata S. J Mol Biol; 2011 Apr 29; 408(2):177-86. PubMed ID: 21354427 [Abstract] [Full Text] [Related]
10. Role of asparagine 1134 in glucosidic bond and transglycosylation specificity of reuteransucrase from Lactobacillus reuteri 121. Kralj S, Eeuwema W, Eckhardt TH, Dijkhuizen L. FEBS J; 2006 Aug 29; 273(16):3735-42. PubMed ID: 16911522 [Abstract] [Full Text] [Related]
11. Complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with alpha-(1,6) glycosidic linkages. Abe A, Yoshida H, Tonozuka T, Sakano Y, Kamitori S. FEBS J; 2005 Dec 29; 272(23):6145-53. PubMed ID: 16302977 [Abstract] [Full Text] [Related]
12. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H, Hachem MA, Petersen BO, Westphal Y, Mannerstedt K, Baumann MJ, Dilokpimol A, Schols HA, Duus JØ, Svensson B. Biochimie; 2010 Dec 29; 92(12):1818-26. PubMed ID: 20678539 [Abstract] [Full Text] [Related]
13. Conversion of a cyclodextrin glucanotransferase into an alpha-amylase: assessment of directed evolution strategies. Kelly RM, Leemhuis H, Dijkhuizen L. Biochemistry; 2007 Oct 02; 46(39):11216-22. PubMed ID: 17824673 [Abstract] [Full Text] [Related]
14. Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis. Monsan P, Remaud-Siméon M, André I. Curr Opin Microbiol; 2010 Jun 02; 13(3):293-300. PubMed ID: 20362489 [Abstract] [Full Text] [Related]
16. Heterologous hyper-expression of a glucansucrase-type glycosyltransferase gene. Swistowska AM, Wittrock S, Collisi W, Hofer B. Appl Microbiol Biotechnol; 2008 May 02; 79(2):255-61. PubMed ID: 18379778 [Abstract] [Full Text] [Related]
17. Molecular cloning of Mucor hiemalis endo-beta-N-acetylglucosaminidase and some properties of the recombinant enzyme. Fujita K, Kobayashi K, Iwamatsu A, Takeuchi M, Kumagai H, Yamamoto K. Arch Biochem Biophys; 2004 Dec 01; 432(1):41-9. PubMed ID: 15519295 [Abstract] [Full Text] [Related]
18. Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase. Drueckes P, Boeck B, Palm D, Schinzel R. Biochemistry; 1996 May 28; 35(21):6727-34. PubMed ID: 8639623 [Abstract] [Full Text] [Related]
19. Extending the Scope of GTFR Glucosylation Reactions with Tosylated Substrates for Rare Sugars Synthesis. Görl J, Possiel C, Sotriffer C, Seibel J. Chembiochem; 2017 Oct 18; 18(20):2012-2015. PubMed ID: 28796424 [Abstract] [Full Text] [Related]
20. Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering. Fierobe HP, Stoffer BB, Frandsen TP, Svensson B. Biochemistry; 1996 Jul 02; 35(26):8696-704. PubMed ID: 8679632 [Abstract] [Full Text] [Related] Page: [Next] [New Search]