These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
92 related items for PubMed ID: 18514169
21. Functional connectivity between the red nucleus and the hippocampus supports the role of hippocampal formation in sensorimotor integration. Dypvik AT, Bland BH. J Neurophysiol; 2004 Oct; 92(4):2040-50. PubMed ID: 15175366 [Abstract] [Full Text] [Related]
22. The theta-related firing activity of parvalbumin-positive neurons in the medial septum-diagonal band of Broca complex and their response to 5-HT1A receptor stimulation in a rat model of Parkinson's disease. Li LB, Han LN, Zhang QJ, Sun YN, Wang Y, Feng J, Zhang L, Wang T, Chen L, Liu J. Hippocampus; 2014 Mar; 24(3):326-40. PubMed ID: 24174292 [Abstract] [Full Text] [Related]
23. The supramammillary nucleus: is it necessary for the mediation of hippocampal theta rhythm? Thinschmidt JS, Kinney GG, Kocsis B. Neuroscience; 1995 Jul; 67(2):301-12. PubMed ID: 7675171 [Abstract] [Full Text] [Related]
24. Localization of pontine PGO wave generation sites and their anatomical projections in the rat. Datta S, Siwek DF, Patterson EH, Cipolloni PB. Synapse; 1998 Dec; 30(4):409-23. PubMed ID: 9826233 [Abstract] [Full Text] [Related]
25. Dopamine D1/5 receptor modulation of firing rate and bidirectional theta burst firing in medial septal/vertical limb of diagonal band neurons in vivo. Fitch TE, Sahr RN, Eastwood BJ, Zhou FC, Yang CR. J Neurophysiol; 2006 May; 95(5):2808-20. PubMed ID: 16452256 [Abstract] [Full Text] [Related]
26. Topography and synaptology of mamillary body projections to the mesencephalon and pons in the rat. Allen GV, Hopkins DA. J Comp Neurol; 1990 Nov 08; 301(2):214-31. PubMed ID: 1702105 [Abstract] [Full Text] [Related]
27. Regular theta-firing neurons in the nucleus incertus during sustained hippocampal activation. Martínez-Bellver S, Cervera-Ferri A, Martínez-Ricós J, Ruiz-Torner A, Luque-Garcia A, Blasco-Serra A, Guerrero-Martínez J, Bataller-Mompeán M, Teruel-Martí V. Eur J Neurosci; 2015 Apr 08; 41(8):1049-67. PubMed ID: 25817317 [Abstract] [Full Text] [Related]
28. Projections from the superior colliculus to the trigeminal system and facial nucleus in the rat. Dauvergne C, Ndiaye A, Buisseret-Delmas C, Buisseret P, Vanderwerf F, Pinganaud G. J Comp Neurol; 2004 Oct 18; 478(3):233-47. PubMed ID: 15368536 [Abstract] [Full Text] [Related]
29. Hippocampal theta rhythm induced by rostral pontine nucleus stimulation in the conditions of pedunculopontine tegmental nucleus inactivation. Matulewicz P, Kuśmierczak M, Orzeł-Gryglewska J, Jurkowlaniec E. Brain Res Bull; 2013 Jul 18; 96():10-8. PubMed ID: 23632212 [Abstract] [Full Text] [Related]
30. Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. II. Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidase. Torigoe Y, Blanks RH, Precht W. J Comp Neurol; 1986 Jan 01; 243(1):88-105. PubMed ID: 3512625 [Abstract] [Full Text] [Related]
31. Evidence for corticotropin-releasing hormone projections from Barrington's nucleus to the periaqueductal gray and dorsal motor nucleus of the vagus in the rat. Valentino RJ, Pavcovich LA, Hirata H. J Comp Neurol; 1995 Dec 18; 363(3):402-22. PubMed ID: 8847408 [Abstract] [Full Text] [Related]
32. The septal EEG suggests a distributed organization of the pacemaker of hippocampal theta in the rat. Nerad L, McNaughton N. Eur J Neurosci; 2006 Jul 18; 24(1):155-66. PubMed ID: 16882013 [Abstract] [Full Text] [Related]
33. A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. Alonso A, Köhler C. J Comp Neurol; 1984 May 20; 225(3):327-43. PubMed ID: 6725648 [Abstract] [Full Text] [Related]
34. Nonretinal projections to the medial terminal accessory optic nucleus in rabbit and rat: a retrograde and anterograde transport study. Giolli RA, Torigoe Y, Blanks RH. J Comp Neurol; 1988 Mar 01; 269(1):73-86. PubMed ID: 3361005 [Abstract] [Full Text] [Related]
35. Parafascicular nucleus projection to the extrastriatal basal ganglia in monkeys. Tandé D, Féger J, Hirsch EC, François C. Neuroreport; 2006 Feb 27; 17(3):277-80. PubMed ID: 16462597 [Abstract] [Full Text] [Related]
36. The origin of reticulospinal fibers in the rat: a HRP study. Satoh K. J Hirnforsch; 1979 Feb 27; 20(3):313-22. PubMed ID: 536593 [Abstract] [Full Text] [Related]
37. Evidence for differential control of posterior hypothalamic, supramammillary, and medial mammillary theta-related cellular discharge by ascending and descending pathways. Kirk IJ, Oddie SD, Konopacki J, Bland BH. J Neurosci; 1996 Sep 01; 16(17):5547-54. PubMed ID: 8757266 [Abstract] [Full Text] [Related]
38. Nicotinic receptor mechanism in supramammillary nucleus mediates physiological regulation of neural activity in dorsal hippocampal field CA1 of anaesthetized rat. Ariffin MZ, Jiang F, Low CM, Khanna S. Hippocampus; 2010 Jul 01; 20(7):852-65. PubMed ID: 19655318 [Abstract] [Full Text] [Related]
39. Quantitative analysis of the bilateral brainstem projections from the whisker and forepaw regions in rat primary motor cortex. Alloway KD, Smith JB, Beauchemin KJ. J Comp Neurol; 2010 Nov 15; 518(22):4546-66. PubMed ID: 20886621 [Abstract] [Full Text] [Related]
40. The midline posterior hypothalamic region comprises a critical part of the ascending brainstem hippocampal synchronizing pathway. Oddie SD, Bland BH, Colom LV, Vertes RP. Hippocampus; 1994 Aug 15; 4(4):454-73. PubMed ID: 7874237 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]