These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 18515014

  • 41. The LIM-homeodomain gene family in the developing Xenopus brain: conservation and divergences with the mouse related to the evolution of the forebrain.
    Bachy I, Vernier P, Retaux S.
    J Neurosci; 2001 Oct 01; 21(19):7620-9. PubMed ID: 11567052
    [Abstract] [Full Text] [Related]

  • 42. The LIM-homeodomain protein ISL1 activates insulin gene promoter directly through synergy with BETA2.
    Zhang H, Wang WP, Guo T, Yang JC, Chen P, Ma KT, Guan YF, Zhou CY.
    J Mol Biol; 2009 Sep 25; 392(3):566-77. PubMed ID: 19619559
    [Abstract] [Full Text] [Related]

  • 43. Transcriptional regulation of tangential neuronal migration in the developing forebrain.
    Chédotal A, Rijli FM.
    Curr Opin Neurobiol; 2009 Apr 25; 19(2):139-45. PubMed ID: 19428236
    [Abstract] [Full Text] [Related]

  • 44. Distinct origin of GABA-ergic neurons in forebrain of man, nonhuman primates and lower mammals.
    Petanjek Z, Dujmović A, Kostović I, Esclapez M.
    Coll Antropol; 2008 Jan 25; 32 Suppl 1():9-17. PubMed ID: 18405052
    [Abstract] [Full Text] [Related]

  • 45. Homeobox genes in vertebrate forebrain development and disease.
    Wigle JT, Eisenstat DD.
    Clin Genet; 2008 Mar 25; 73(3):212-26. PubMed ID: 18241223
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. Spatiotemporal sequence of appearance of NPFF-immunoreactive structures in the developing central nervous system of Xenopus laevis.
    López JM, Moreno N, Morona R, Muñoz M, González A.
    Peptides; 2006 May 25; 27(5):1036-53. PubMed ID: 16504341
    [Abstract] [Full Text] [Related]

  • 48. An evolutionary interpretation of teleostean forebrain anatomy.
    Mueller T, Wullimann MF.
    Brain Behav Evol; 2009 May 25; 74(1):30-42. PubMed ID: 19729894
    [Abstract] [Full Text] [Related]

  • 49. Development of the amygdalohypothalamic projection in the mouse embryonic forebrain.
    Aizawa H, Sato Y, Maekawa M, Fujisawa H, Hirata T, Yuasa S.
    Anat Embryol (Berl); 2004 Jul 25; 208(4):249-64. PubMed ID: 15232736
    [Abstract] [Full Text] [Related]

  • 50. Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon.
    Milán FJ, Puelles L.
    J Comp Neurol; 2000 Mar 27; 419(1):96-121. PubMed ID: 10717642
    [Abstract] [Full Text] [Related]

  • 51. Gli3 is required autonomously for dorsal telencephalic cells to adopt appropriate fates during embryonic forebrain development.
    Quinn JC, Molinek M, Mason JO, Price DJ.
    Dev Biol; 2009 Mar 01; 327(1):204-15. PubMed ID: 19121302
    [Abstract] [Full Text] [Related]

  • 52. Distinct immunohistochemically defined areas in the medial amygdala in the developing and adult mouse.
    Guirado S, Real MA, Dávila JC.
    Brain Res Bull; 2008 Mar 18; 75(2-4):214-7. PubMed ID: 18331873
    [Abstract] [Full Text] [Related]

  • 53. Expression of Barhl2 and its relationship with Pax6 expression in the forebrain of the mouse embryo.
    Parish EV, Mason JO, Price DJ.
    BMC Neurosci; 2016 Nov 25; 17(1):76. PubMed ID: 27887593
    [Abstract] [Full Text] [Related]

  • 54. Development of the mouse amygdala as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation.
    Soma M, Aizawa H, Ito Y, Maekawa M, Osumi N, Nakahira E, Okamoto H, Tanaka K, Yuasa S.
    J Comp Neurol; 2009 Mar 01; 513(1):113-28. PubMed ID: 19107806
    [Abstract] [Full Text] [Related]

  • 55. Characterization of a distinct subpopulation of striatal projection neurons expressing the Dlx genes in the basal ganglia through the activity of the I56ii enhancer.
    Ghanem N, Yu M, Poitras L, Rubenstein JL, Ekker M.
    Dev Biol; 2008 Oct 15; 322(2):415-24. PubMed ID: 18706405
    [Abstract] [Full Text] [Related]

  • 56. FGF receptor dependent regulation of Lhx9 expression in the developing nervous system.
    Atkinson-Leadbeater K, Bertolesi GE, Johnston JA, Hehr CL, McFarlane S.
    Dev Dyn; 2009 Feb 15; 238(2):367-75. PubMed ID: 19161224
    [Abstract] [Full Text] [Related]

  • 57. HMG-box factor SoxD/Sox15 and homeodomain-containing factor Xanf1/Hesx1 directly interact and regulate the expression of Xanf1/Hesx1 during early forebrain development in Xenopus laevis.
    Martynova NY, Eroshkin FM, Оrlov EE, Zaraisky AG.
    Gene; 2018 Jan 05; 638():52-59. PubMed ID: 28918251
    [Abstract] [Full Text] [Related]

  • 58. The LIM-homeobox gene Islet-1 is required for the development of restricted forebrain cholinergic neurons.
    Elshatory Y, Gan L.
    J Neurosci; 2008 Mar 26; 28(13):3291-7. PubMed ID: 18367596
    [Abstract] [Full Text] [Related]

  • 59. Expression of the LIM-homeodomain gene Lmx1a in the postnatal mouse central nervous system.
    Zou HL, Su CJ, Shi M, Zhao GY, Li ZY, Guo C, Ding YQ.
    Brain Res Bull; 2009 Mar 30; 78(6):306-12. PubMed ID: 19111912
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.