These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 18515304

  • 1. Lactate: a major and crucial player in normal function of both muscle and brain.
    Schurr A.
    J Physiol; 2008 Jun 01; 586(11):2665-6. PubMed ID: 18515304
    [No Abstract] [Full Text] [Related]

  • 2. Non-selective beta-adrenergic blockade prevents reduction of the cerebral metabolic ratio during exhaustive exercise in humans.
    Larsen TS, Rasmussen P, Overgaard M, Secher NH, Nielsen HB.
    J Physiol; 2008 Jun 01; 586(11):2807-15. PubMed ID: 18403423
    [Abstract] [Full Text] [Related]

  • 3. Point: Muscle lactate and H⁺ production do have a 1:1 association in skeletal muscle.
    Vinnakota KC, Kushmerick MJ.
    J Appl Physiol (1985); 2011 May 01; 110(5):1487-9; discussion 1497. PubMed ID: 21212251
    [No Abstract] [Full Text] [Related]

  • 4. Counterpoint: Muscle lactate and H⁺ production do not have a 1:1 association in skeletal muscle.
    Robergs RA.
    J Appl Physiol (1985); 2011 May 01; 110(5):1489-91; discussion 1498. PubMed ID: 21562149
    [No Abstract] [Full Text] [Related]

  • 5. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Confusion concerning the lactate proton ratio: a problem of definition?
    Bishop DJ.
    J Appl Physiol (1985); 2011 May 01; 110(5):1494-5. PubMed ID: 21717607
    [No Abstract] [Full Text] [Related]

  • 6. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. No evidence for the Counterpoint position.
    Boning D, Maassen N.
    J Appl Physiol (1985); 2011 May 01; 110(5):1493-4. PubMed ID: 21717605
    [No Abstract] [Full Text] [Related]

  • 7. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Calculations of Robergs support the view of Vinnakota and Kushmerick.
    Beard DA.
    J Appl Physiol (1985); 2011 May 01; 110(5):1493. PubMed ID: 21372102
    [No Abstract] [Full Text] [Related]

  • 8. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Calculations of Robergs support the view of Vinnakota and Kushmerick.
    Lindinger MI, Heigenhauser GJ.
    J Appl Physiol (1985); 2011 May 01; 110(5):1493. PubMed ID: 21717604
    [No Abstract] [Full Text] [Related]

  • 9. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Why add complexity/confusion to a simple issue?
    Sahlin K.
    J Appl Physiol (1985); 2011 May 01; 110(5):1494. PubMed ID: 21717606
    [No Abstract] [Full Text] [Related]

  • 10. Energy expenditure of heavy to severe exercise and recovery.
    Scott CB.
    J Theor Biol; 2000 Nov 21; 207(2):293-7. PubMed ID: 11034835
    [Abstract] [Full Text] [Related]

  • 11. Rebuttal from Robergs.
    J Appl Physiol (1985); 2011 May 21; 110(5):1491-2. PubMed ID: 21562150
    [No Abstract] [Full Text] [Related]

  • 12. Rebuttal from Vinnakota and Kushmerick.
    J Appl Physiol (1985); 2011 May 21; 110(5):1491. PubMed ID: 21562151
    [No Abstract] [Full Text] [Related]

  • 13. Short-term interval training at both lower and higher intensities in the severe exercise domain result in improvements in V̇O₂ on-kinetics.
    Turnes T, de Aguiar RA, de Oliveira Cruz RS, Lisbôa FD, Pereira KL, Caputo F.
    Eur J Appl Physiol; 2016 Oct 21; 116(10):1975-84. PubMed ID: 27491618
    [Abstract] [Full Text] [Related]

  • 14. Saturation of the lactate clearance mechanisms different from the "lactate shuttle" determines the anaerobic threshold: prediction from the bioenergetic model.
    Binzoni T.
    J Physiol Anthropol Appl Human Sci; 2005 Mar 21; 24(2):175-82. PubMed ID: 15840950
    [Abstract] [Full Text] [Related]

  • 15. Predicting lactate threshold using ventilatory threshold.
    Plato PA, McNulty M, Crunk SM, Tug Ergun A.
    Int J Sports Med; 2008 Sep 21; 29(9):732-7. PubMed ID: 18214811
    [Abstract] [Full Text] [Related]

  • 16. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains.
    Black MI, Jones AM, Blackwell JR, Bailey SJ, Wylie LJ, McDonagh ST, Thompson C, Kelly J, Sumners P, Mileva KN, Bowtell JL, Vanhatalo A.
    J Appl Physiol (1985); 2017 Mar 01; 122(3):446-459. PubMed ID: 28008101
    [Abstract] [Full Text] [Related]

  • 17. Individualized aerobic-power training in an underperforming youth elite association football player.
    Mujika I, Santisteban J, Angulo P, Padilla S.
    Int J Sports Physiol Perform; 2007 Sep 01; 2(3):332-5. PubMed ID: 19168934
    [Abstract] [Full Text] [Related]

  • 18. The contribution of energy systems during the upper body Wingate anaerobic test.
    Lovell D, Kerr A, Wiegand A, Solomon C, Harvey L, McLellan C.
    Appl Physiol Nutr Metab; 2013 Feb 01; 38(2):216-9. PubMed ID: 23438235
    [Abstract] [Full Text] [Related]

  • 19. Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography.
    Lucía A, Sánchez O, Carvajal A, Chicharro JL.
    Br J Sports Med; 1999 Jun 01; 33(3):178-85. PubMed ID: 10378070
    [Abstract] [Full Text] [Related]

  • 20. Clarifying the equation for modeling of VO2 kinetics above the lactate threshold.
    Ma S, Rossiter HB, Barstow TJ, Casaburi R, Porszasz J.
    J Appl Physiol (1985); 2010 Oct 01; 109(4):1283-4. PubMed ID: 20940444
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.