These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 18515304

  • 21. Low anaerobic threshold and increased skeletal muscle lactate production in subjects with Huntington's disease.
    Ciammola A, Sassone J, Sciacco M, Mencacci NE, Ripolone M, Bizzi C, Colciago C, Moggio M, Parati G, Silani V, Malfatto G.
    Mov Disord; 2011 Jan; 26(1):130-7. PubMed ID: 20931633
    [Abstract] [Full Text] [Related]

  • 22. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Lactate and acidosis yet again?
    Tabata I.
    J Appl Physiol (1985); 2011 May; 110(5):1495-6. PubMed ID: 21717610
    [No Abstract] [Full Text] [Related]

  • 23. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Lactate and acidosis yet again?
    Crampin EJ.
    J Appl Physiol (1985); 2011 May; 110(5):1495. PubMed ID: 21717609
    [No Abstract] [Full Text] [Related]

  • 24. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Lactate and acidosis yet again?
    Meyer RA, Wiseman RW.
    J Appl Physiol (1985); 2011 May; 110(5):1495. PubMed ID: 21717608
    [No Abstract] [Full Text] [Related]

  • 25. Blood lactate accumulation decreases during the slow component of oxygen uptake without a decrease in muscular efficiency.
    O'Connell JM, Weir JM, MacIntosh BR.
    Pflugers Arch; 2017 Oct; 469(10):1257-1265. PubMed ID: 28550471
    [Abstract] [Full Text] [Related]

  • 26. Effect of warm up on energy cost and energy sources of a ballet dance exercise.
    Guidetti L, Emerenziani GP, Gallotta MC, Baldari C.
    Eur J Appl Physiol; 2007 Feb; 99(3):275-81. PubMed ID: 17165061
    [Abstract] [Full Text] [Related]

  • 27. Study of energy metabolism of skeletal muscles in alcoholic liver disease--expired gas analysis during exercise.
    Shiraishi K, Motegi S, Nagaoka R, Ogasawara F, Saito T, Watanabe M, Matsuzaki S.
    Alcohol Clin Exp Res; 2005 Dec; 29(12 Suppl):282S-4S. PubMed ID: 16385237
    [Abstract] [Full Text] [Related]

  • 28. Metabolic rate, cardiac response, and aerobic capacity in fibromyalgia: a case-control study.
    Bardal EM, Olsen TV, Ettema G, Mork PJ.
    Scand J Rheumatol; 2013 Dec; 42(5):417-20. PubMed ID: 23527918
    [Abstract] [Full Text] [Related]

  • 29. Muscle-energetic and cardio-pulmonary determinants of exercise tolerance in humans: Muscle-energetic and cardio-pulmonary determinants of exercise tolerance in humans.
    Ward SA.
    Exp Physiol; 2007 Mar; 92(2):321-2. PubMed ID: 17360933
    [No Abstract] [Full Text] [Related]

  • 30. VO2max and lactate production are not normal in all patients with chronic fatigue.
    Jones NL, Heigenhauser GJ.
    Med Sci Sports Exerc; 2002 Jul; 34(7):1215; author reply 1215-6. PubMed ID: 12131266
    [No Abstract] [Full Text] [Related]

  • 31. Changes in energy system contributions to the Wingate anaerobic test in climbers after a high altitude expedition.
    Doria C, Verratti V, Pietrangelo T, Fanò-Illic G, Bisconti AV, Shokohyar S, Rampichini S, Limonta E, Coratella G, Longo S, Cè E, Esposito F.
    Eur J Appl Physiol; 2020 Jul; 120(7):1629-1636. PubMed ID: 32494861
    [Abstract] [Full Text] [Related]

  • 32. Lactic acid: New roles in a new millennium.
    Gladden LB.
    Proc Natl Acad Sci U S A; 2001 Jan 16; 98(2):395-7. PubMed ID: 11209043
    [No Abstract] [Full Text] [Related]

  • 33. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects.
    Wasserman K, Stringer WW, Casaburi R, Koike A, Cooper CB.
    Z Kardiol; 1994 Jan 16; 83 Suppl 3():1-12. PubMed ID: 7941654
    [Abstract] [Full Text] [Related]

  • 34. On the methodology of the Conconi test.
    Grazzi G, Casoni I, Mazzoni G, Manfredini F, Uliari S, Conconi F.
    Int J Sports Med; 2005 Jun 16; 26(5):397-8; author reply 399. PubMed ID: 15895324
    [No Abstract] [Full Text] [Related]

  • 35. Lactic acid and exercise performance : culprit or friend?
    Cairns SP.
    Sports Med; 2006 Jun 16; 36(4):279-91. PubMed ID: 16573355
    [Abstract] [Full Text] [Related]

  • 36. Energy system interaction and relative contribution during maximal exercise.
    Gastin PB.
    Sports Med; 2001 Jun 16; 31(10):725-41. PubMed ID: 11547894
    [Abstract] [Full Text] [Related]

  • 37. Negative accumulated oxygen deficit during heavy and very heavy intensity cycle ergometry in humans.
    Ozyener F, Rossiter HB, Ward SA, Whipp BJ.
    Eur J Appl Physiol; 2003 Sep 16; 90(1-2):185-90. PubMed ID: 14504952
    [Abstract] [Full Text] [Related]

  • 38. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle.
    Parra J, Cadefau JA, Rodas G, Amigó N, Cussó R.
    Acta Physiol Scand; 2000 Jun 16; 169(2):157-65. PubMed ID: 10848646
    [Abstract] [Full Text] [Related]

  • 39. Quantification of anaerobic energy production during intense exercise.
    Bangsbo J.
    Med Sci Sports Exerc; 1998 Jan 16; 30(1):47-52. PubMed ID: 9475643
    [Abstract] [Full Text] [Related]

  • 40. Critical velocity and maximal lactate steady state: better determinants of 2-hour marathon.
    Ade CJ, Broxterman RM, Barstow TJ.
    J Appl Physiol (1985); 2011 Jan 16; 110(1):287-8; discussion 294. PubMed ID: 21542169
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.