These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 18521565
1. Exploiting synteny in Cucumis for mapping of Psm: a unique locus controlling paternal mitochondrial sorting. Al-Faifi S, Meyer JD, Garcia-Mas J, Monforte AJ, Havey MJ. Theor Appl Genet; 2008 Aug; 117(4):523-9. PubMed ID: 18521565 [Abstract] [Full Text] [Related]
2. Pentatricopeptide repeat 336 as the candidate gene for paternal sorting of mitochondria (Psm) in cucumber. Del Valle-Echevarria AR, Sanseverino W, Garcia-Mas J, Havey MJ. Theor Appl Genet; 2016 Oct; 129(10):1951-9. PubMed ID: 27423873 [Abstract] [Full Text] [Related]
3. The Psm locus controls paternal sorting of the cucumber mitochondrial genome. Havey MJ, Park YH, Bartoszewski G. J Hered; 2004 Oct; 95(6):492-7. PubMed ID: 15475394 [Abstract] [Full Text] [Related]
4. Genetic mapping of paternal sorting of mitochondria in cucumber. Calderon CI, Yandell BS, Havey MJ. Theor Appl Genet; 2012 Jun; 125(1):11-8. PubMed ID: 22350175 [Abstract] [Full Text] [Related]
5. Construction of a fosmid library of cucumber (Cucumis sativus) and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon (Cucumis melo). Meyer JD, Deleu W, Garcia-Mas J, Havey MJ. Mol Genet Genomics; 2008 May; 279(5):473-80. PubMed ID: 18273646 [Abstract] [Full Text] [Related]
6. Comparative mapping of ZYMV resistances in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). Park Y, Katzir N, Brotman Y, King J, Bertrand F, Havey M. Theor Appl Genet; 2004 Aug; 109(4):707-12. PubMed ID: 15340688 [Abstract] [Full Text] [Related]
7. The selection of mosaic (MSC) phenotype after passage of cucumber (Cucumis sativus L.) through cell culture - a method to obtain plant mitochondrial mutants. Bartoszewski G, Havey MJ, Ziółkowska A, Długosz M, Malepszy S. J Appl Genet; 2007 Aug; 48(1):1-9. PubMed ID: 17272856 [Abstract] [Full Text] [Related]
8. Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Yang L, Koo DH, Li D, Zhang T, Jiang J, Luan F, Renner SS, Hénaff E, Sanseverino W, Garcia-Mas J, Casacuberta J, Senalik DA, Simon PW, Chen J, Weng Y. Plant J; 2014 Jan; 77(1):16-30. PubMed ID: 24127692 [Abstract] [Full Text] [Related]
9. A one-megabase physical map provides insights on gene organization in the enormous mitochondrial genome of cucumber. Bartoszewski G, Gawronski P, Szklarczyk M, Verbakel H, Havey MJ. Genome; 2009 Apr; 52(4):299-307. PubMed ID: 19370086 [Abstract] [Full Text] [Related]
10. Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. Li D, Cuevas HE, Yang L, Li Y, Garcia-Mas J, Zalapa J, Staub JE, Luan F, Reddy U, He X, Gong Z, Weng Y. BMC Genomics; 2011 Aug 05; 12():396. PubMed ID: 21816110 [Abstract] [Full Text] [Related]
11. The Mosaic Mutants of Cucumber: A Method to Produce Knock-Downs of Mitochondrial Transcripts. Del Valle-Echevarria AR, Kiełkowska A, Bartoszewski G, Havey MJ. G3 (Bethesda); 2015 Apr 14; 5(6):1211-21. PubMed ID: 25873637 [Abstract] [Full Text] [Related]
12. Mosaic (MSC) cucumbers regenerated from independent cell cultures possess different mitochondrial rearrangements. Bartoszewski G, Malepszy S, Havey MJ. Curr Genet; 2004 Feb 14; 45(1):45-53. PubMed ID: 14586555 [Abstract] [Full Text] [Related]
13. Sequencing cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling-tolerant and -susceptible cucumber lines. Chung SM, Gordon VS, Staub JE. Genome; 2007 Feb 14; 50(2):215-25. PubMed ID: 17546086 [Abstract] [Full Text] [Related]
14. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L. Wen C, Mao A, Dong C, Liu H, Yu S, Guo YD, Weng Y, Xu Y. Theor Appl Genet; 2015 Dec 14; 128(12):2495-506. PubMed ID: 26385372 [Abstract] [Full Text] [Related]
15. Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Li Y, Yang L, Pathak M, Li D, He X, Weng Y. Theor Appl Genet; 2011 Oct 14; 123(6):973-83. PubMed ID: 21735235 [Abstract] [Full Text] [Related]
16. Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3 (CsCLV3) underlying carpel number variations in cucumber. Li S, Pan Y, Wen C, Li Y, Liu X, Zhang X, Behera TK, Xing G, Weng Y. Theor Appl Genet; 2016 May 14; 129(5):1007-22. PubMed ID: 26883041 [Abstract] [Full Text] [Related]
17. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Yang L, Koo DH, Li Y, Zhang X, Luan F, Havey MJ, Jiang J, Weng Y. Plant J; 2012 Sep 14; 71(6):895-906. PubMed ID: 22487099 [Abstract] [Full Text] [Related]
18. Transcriptome Analyses of Mosaic (MSC) Mitochondrial Mutants of Cucumber in a Highly Inbred Nuclear Background. Mróz TL, Eves-van den Akker S, Bernat A, Skarzyńska A, Pryszcz L, Olberg M, Havey MJ, Bartoszewski G. G3 (Bethesda); 2018 Mar 02; 8(3):953-965. PubMed ID: 29330162 [Abstract] [Full Text] [Related]
19. Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Kang H, Weng Y, Yang Y, Zhang Z, Zhang S, Mao Z, Cheng G, Gu X, Huang S, Xie B. Theor Appl Genet; 2011 Mar 02; 122(4):795-803. PubMed ID: 21104067 [Abstract] [Full Text] [Related]
20. Fine mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less1 mutation (td-1) in cucumber. Chen F, Fu B, Pan Y, Zhang C, Wen H, Weng Y, Chen P, Li Y. Theor Appl Genet; 2017 Aug 02; 130(8):1549-1558. PubMed ID: 28466109 [Abstract] [Full Text] [Related] Page: [Next] [New Search]