These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 18522945
1. Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components. Genest O, Neumann M, Seduk F, Stöcklein W, Méjean V, Leimkühler S, Iobbi-Nivol C. J Biol Chem; 2008 Aug 01; 283(31):21433-40. PubMed ID: 18522945 [Abstract] [Full Text] [Related]
2. Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli. Reschke S, Sigfridsson KG, Kaufmann P, Leidel N, Horn S, Gast K, Schulzke C, Haumann M, Leimkühler S. J Biol Chem; 2013 Oct 11; 288(41):29736-45. PubMed ID: 24003231 [Abstract] [Full Text] [Related]
3. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. Ilbert M, Méjean V, Giudici-Orticoni MT, Samama JP, Iobbi-Nivol C. J Biol Chem; 2003 Aug 01; 278(31):28787-92. PubMed ID: 12766163 [Abstract] [Full Text] [Related]
6. TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature. Genest O, Ilbert M, Méjean V, Iobbi-Nivol C. J Biol Chem; 2005 Apr 22; 280(16):15644-8. PubMed ID: 15723832 [Abstract] [Full Text] [Related]
7. Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N-Oxide Reductase. Kaufmann P, Duffus BR, Mitrova B, Iobbi-Nivol C, Teutloff C, Nimtz M, Jänsch L, Wollenberger U, Leimkühler S. Biochemistry; 2018 Feb 20; 57(7):1130-1143. PubMed ID: 29334455 [Abstract] [Full Text] [Related]
8. Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes. Genest O, Méjean V, Iobbi-Nivol C. FEMS Microbiol Lett; 2009 Aug 20; 297(1):1-9. PubMed ID: 19519768 [Abstract] [Full Text] [Related]
12. Chaperones in maturation of molybdoenzymes: Why specific is better than general? Lemaire ON, Bouillet S, Méjean V, Iobbi-Nivol C, Genest O. Bioengineered; 2017 Mar 04; 8(2):133-136. PubMed ID: 27580420 [Abstract] [Full Text] [Related]
13. Signal peptide protection by specific chaperone. Genest O, Seduk F, Ilbert M, Méjean V, Iobbi-Nivol C. Biochem Biophys Res Commun; 2006 Jan 20; 339(3):991-5. PubMed ID: 16337610 [Abstract] [Full Text] [Related]
16. Transfer of the molybdenum cofactor synthesized by Rhodobacter capsulatus MoeA to XdhC and MobA. Neumann M, Stöcklein W, Leimkühler S. J Biol Chem; 2007 Sep 28; 282(39):28493-28500. PubMed ID: 17686778 [Abstract] [Full Text] [Related]
17. Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. Buchanan G, Maillard J, Nabuurs SB, Richardson DJ, Palmer T, Sargent F. FEBS Lett; 2008 Dec 10; 582(29):3979-84. PubMed ID: 19013157 [Abstract] [Full Text] [Related]
18. The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria. Yokoyama K, Leimkühler S. Biochim Biophys Acta; 2015 Jun 10; 1853(6):1335-49. PubMed ID: 25268953 [Abstract] [Full Text] [Related]
19. Intrinsic GTPase activity of a bacterial twin-arginine translocation proofreading chaperone induced by domain swapping. Guymer D, Maillard J, Agacan MF, Brearley CA, Sargent F. FEBS J; 2010 Jan 10; 277(2):511-25. PubMed ID: 20064164 [Abstract] [Full Text] [Related]
20. NarJ chaperone binds on two distinct sites of the aponitrate reductase of Escherichia coli to coordinate molybdenum cofactor insertion and assembly. Vergnes A, Pommier J, Toci R, Blasco F, Giordano G, Magalon A. J Biol Chem; 2006 Jan 27; 281(4):2170-6. PubMed ID: 16286471 [Abstract] [Full Text] [Related] Page: [Next] [New Search]