These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 18528911
1. Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa. Benzarti S, Mohri S, Ono Y. Environ Toxicol; 2008 Oct; 23(5):607-16. PubMed ID: 18528911 [Abstract] [Full Text] [Related]
2. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype). Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PM, Götz B, Küpper H. Plant Physiol; 2009 Oct; 151(2):715-31. PubMed ID: 19692532 [Abstract] [Full Text] [Related]
3. Flow cytometric assessment of Cd genotoxicity in three plants with different metal accumulation and detoxification capacities. Monteiro MS, Rodriguez E, Loureiro J, Mann RM, Soares AM, Santos C. Ecotoxicol Environ Saf; 2010 Sep; 73(6):1231-7. PubMed ID: 20663557 [Abstract] [Full Text] [Related]
4. Response of antioxidative enzymes and apoplastic bypass transport in Thlaspi caerulescens and Raphanus sativus to cadmium stress. Benzarti S, Hamdi H, Mohri S, Ono Y. Int J Phytoremediation; 2010 Sep; 12(8):733-44. PubMed ID: 21166344 [Abstract] [Full Text] [Related]
5. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils. Keller C, Hammer D. Environ Pollut; 2004 Sep; 131(2):243-54. PubMed ID: 15234091 [Abstract] [Full Text] [Related]
6. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. Papoyan A, Piñeros M, Kochian LV. New Phytol; 2007 Sep; 175(1):51-58. PubMed ID: 17547666 [Abstract] [Full Text] [Related]
7. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Milner MJ, Kochian LV. Ann Bot; 2008 Jul; 102(1):3-13. PubMed ID: 18440996 [Abstract] [Full Text] [Related]
8. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. Bayçu G, Gevrek-Kürüm N, Moustaka J, Csatári I, Rognes SE, Moustakas M. Environ Sci Pollut Res Int; 2017 Jan; 24(3):2840-2850. PubMed ID: 27838905 [Abstract] [Full Text] [Related]
9. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions. Saison C, Schwartz C, Morel JL. Int J Phytoremediation; 2004 Jan; 6(1):49-61. PubMed ID: 15224775 [Abstract] [Full Text] [Related]
10. Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead. Lamb DT, Ming H, Megharaj M, Naidu R. Arch Environ Contam Toxicol; 2010 Oct; 59(3):424-32. PubMed ID: 20213195 [Abstract] [Full Text] [Related]
11. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Boominathan R, Doran PM. Biotechnol Bioeng; 2003 Jul 20; 83(2):158-67. PubMed ID: 12768621 [Abstract] [Full Text] [Related]
12. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Ma JF. Plant J; 2011 Jun 20; 66(5):852-62. PubMed ID: 21457363 [Abstract] [Full Text] [Related]
13. Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines. Klein MA, Sekimoto H, Milner MJ, Kochian LV. Plant Physiol; 2008 Aug 20; 147(4):2006-16. PubMed ID: 18550685 [Abstract] [Full Text] [Related]
14. The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. Rigola D, Fiers M, Vurro E, Aarts MG. New Phytol; 2006 Aug 20; 170(4):753-65. PubMed ID: 16684236 [Abstract] [Full Text] [Related]
15. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ. J Exp Bot; 2007 Aug 20; 58(7):1717-28. PubMed ID: 17404382 [Abstract] [Full Text] [Related]
16. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Cosio C, Martinoia E, Keller C. Plant Physiol; 2004 Feb 20; 134(2):716-25. PubMed ID: 14730081 [Abstract] [Full Text] [Related]
17. [Stoichiometry of multi-elements in the zinc-cadmium hyperaccumulator Thlaspi caerulescens grown hydroponically under different zinc concentrations determined by ICP-AES]. Han WX, Xu YM, Du W, Tang AH, Jiang RF. Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep 20; 29(9):2565-7. PubMed ID: 19950676 [Abstract] [Full Text] [Related]
18. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by x-ray absorption spectroscopy. Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PM. Plant Physiol; 2004 Feb 20; 134(2):748-57. PubMed ID: 14966248 [Abstract] [Full Text] [Related]
19. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens. Guimarães MA, Gustin JL, Salt DE. New Phytol; 2009 Oct 20; 184(2):323-329. PubMed ID: 19656301 [Abstract] [Full Text] [Related]
20. TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. Hu YT, Ming F, Chen WW, Yan JY, Xu ZY, Li GX, Xu CY, Yang JL, Zheng SJ. PLoS One; 2012 Oct 20; 7(6):e38535. PubMed ID: 22761683 [Abstract] [Full Text] [Related] Page: [Next] [New Search]