These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


700 related items for PubMed ID: 18532857

  • 1. Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading.
    Bose D, Bhalla KS, Untaroiu CD, Ivarsson BJ, Crandall JR, Hurwitz S.
    J Biomech Eng; 2008 Jun; 130(3):031008. PubMed ID: 18532857
    [Abstract] [Full Text] [Related]

  • 2. Coupling lateral bending and shearing mechanisms to define knee injury criteria for pedestrian safety.
    Mo F, Masson C, Cesari D, Arnoux PJ.
    Traffic Inj Prev; 2013 Jun; 14(4):378-86. PubMed ID: 23531261
    [Abstract] [Full Text] [Related]

  • 3. Injury thresholds of knee ligaments under lateral-medial shear loading: an experimental study.
    Mo F, Arnoux PJ, Zahidi O, Masson C.
    Traffic Inj Prev; 2013 Jun; 14(6):623-9. PubMed ID: 23859467
    [Abstract] [Full Text] [Related]

  • 4. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing.
    Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA.
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):977-83. PubMed ID: 16790304
    [Abstract] [Full Text] [Related]

  • 5. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
    Gardiner JC, Weiss JA.
    J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224
    [Abstract] [Full Text] [Related]

  • 6. Osteochondral microdamage from valgus bending of the human knee.
    Meyer EG, Villwock MR, Haut RC.
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):577-82. PubMed ID: 19505750
    [Abstract] [Full Text] [Related]

  • 7. Medial collateral ligament injuries and subsequent load on the anterior cruciate ligament: a biomechanical evaluation in a cadaveric model.
    Battaglia MJ, Lenhoff MW, Ehteshami JR, Lyman S, Provencher MT, Wickiewicz TL, Warren RF.
    Am J Sports Med; 2009 Feb; 37(2):305-11. PubMed ID: 19098154
    [Abstract] [Full Text] [Related]

  • 8. Finite element analysis of knee injury risks in car-to-pedestrian impacts.
    Nagasaka K, Mizuno K, Tanaka E, Yamamoto S, Iwamoto M, Miki K, Kajzer J.
    Traffic Inj Prev; 2003 Dec; 4(4):345-54. PubMed ID: 14630583
    [Abstract] [Full Text] [Related]

  • 9. The role of the posterior oblique ligament in controlling posterior tibial translation in the posterior cruciate ligament-deficient knee.
    Petersen W, Loerch S, Schanz S, Raschke M, Zantop T.
    Am J Sports Med; 2008 Mar; 36(3):495-501. PubMed ID: 18182651
    [Abstract] [Full Text] [Related]

  • 10. Effects of foot orthoses and valgus bracing on the knee adduction moment and medial joint load during gait.
    Shelburne KB, Torry MR, Steadman JR, Pandy MG.
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):814-21. PubMed ID: 18362043
    [Abstract] [Full Text] [Related]

  • 11. Pedestrian injuries: viscoelastic properties of human knee ligaments at high loading rates.
    van Dommelen JA, Jolandan MM, Ivarsson BJ, Millington SA, Raut M, Kerrigan JR, Crandall JR, Diduch DR.
    Traffic Inj Prev; 2005 Sep; 6(3):278-87. PubMed ID: 16087469
    [Abstract] [Full Text] [Related]

  • 12. [A mathematical model of determining the knee joint injury].
    Zhao G, Wu Y.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Oct; 21(5):737-40. PubMed ID: 15553847
    [Abstract] [Full Text] [Related]

  • 13. Pure passive hyperextension of the human cadaver knee generates simultaneous bicruciate ligament rupture.
    Meyer EG, Baumer TG, Haut RC.
    J Biomech Eng; 2011 Jan; 133(1):011012. PubMed ID: 21186902
    [Abstract] [Full Text] [Related]

  • 14. Predicting the effects of knee focal articular surface injury with a patient-specific finite element model.
    Papaioannou G, Demetropoulos CK, King YH.
    Knee; 2010 Jan; 17(1):61-8. PubMed ID: 19477131
    [Abstract] [Full Text] [Related]

  • 15. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study.
    Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P.
    Arthroscopy; 2007 Aug; 23(8):852-61. PubMed ID: 17681207
    [Abstract] [Full Text] [Related]

  • 16. Influence of the crash pulse shape on the peak loading and the injury tolerance levels of the neck in in vitro low-speed side-collisions.
    Kettler A, Fruth K, Claes L, Wilke HJ.
    J Biomech; 2006 Aug; 39(2):323-9. PubMed ID: 16321634
    [Abstract] [Full Text] [Related]

  • 17. [Experimental study of dynamic mechanical properties of the knee joint in varus-valgus direction in vivo].
    Yasuda K.
    Nihon Seikeigeka Gakkai Zasshi; 1983 Nov; 57(11):1787-98. PubMed ID: 6676394
    [Abstract] [Full Text] [Related]

  • 18. Injury tolerance of tibia for the car-pedestrian impact.
    Mo F, Arnoux PJ, Jure JJ, Masson C.
    Accid Anal Prev; 2012 May; 46():18-25. PubMed ID: 22310039
    [Abstract] [Full Text] [Related]

  • 19. Differences in torsional joint stiffness of the knee between genders: a human cadaveric study.
    Hsu WH, Fisk JA, Yamamoto Y, Debski RE, Woo SL.
    Am J Sports Med; 2006 May; 34(5):765-70. PubMed ID: 16399932
    [Abstract] [Full Text] [Related]

  • 20. Ligament balancing in TKA: evaluation of a force-sensing device and the influence of patellar eversion and ligament release.
    Crottet D, Kowal J, Sarfert SA, Maeder T, Bleuler H, Nolte LP, Dürselen L.
    J Biomech; 2007 May; 40(8):1709-15. PubMed ID: 17094997
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.