These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 18535996

  • 1. The transcription factors HeBlimp and HeT-brain of an indirectly developing polychaete suggest ancestral endodermal, gastrulation, and sensory cell-type specification roles.
    Arenas-Mena C.
    J Exp Zool B Mol Dev Evol; 2008 Nov 15; 310(7):567-76. PubMed ID: 18535996
    [Abstract] [Full Text] [Related]

  • 2. Brachyury, Tbx2/3 and sall expression during embryogenesis of the indirectly developing polychaete Hydroides elegans.
    Arenas-Mena C.
    Int J Dev Biol; 2013 Nov 15; 57(1):73-83. PubMed ID: 23585355
    [Abstract] [Full Text] [Related]

  • 3. HeOtx expression in an indirectly developing polychaete correlates with gastrulation by invagination.
    Arenas-Mena C, Wong KS.
    Dev Genes Evol; 2007 May 15; 217(5):373-84. PubMed ID: 17431669
    [Abstract] [Full Text] [Related]

  • 4. Developmental expression of foxA and gata genes during gut formation in the polychaete annelid, Capitella sp. I.
    Boyle MJ, Seaver EC.
    Evol Dev; 2008 May 15; 10(1):89-105. PubMed ID: 18184360
    [Abstract] [Full Text] [Related]

  • 5. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM, McClay DR.
    Dev Biol; 2001 Nov 01; 239(1):132-47. PubMed ID: 11784024
    [Abstract] [Full Text] [Related]

  • 6. Ciliary band gene expression patterns in the embryo and trochophore larva of an indirectly developing polychaete.
    Arenas-Mena C, Wong KS, Arandi-Forosani N.
    Gene Expr Patterns; 2007 Apr 01; 7(5):544-9. PubMed ID: 17350349
    [Abstract] [Full Text] [Related]

  • 7. Sinistral equal-size spiral cleavage of the indirectly developing polychaete Hydroides elegans.
    Arenas-Mena C.
    Dev Dyn; 2007 Jun 01; 236(6):1611-22. PubMed ID: 17471539
    [Abstract] [Full Text] [Related]

  • 8. Development of a feeding trochophore in the polychaete Hydroides elegans.
    Arenas-Mena C, Li A.
    Int J Dev Biol; 2014 Jun 01; 58(6-8):575-83. PubMed ID: 25690971
    [Abstract] [Full Text] [Related]

  • 9. Expression of GATA and POU transcription factors during the development of the planktotrophic trochophore of the polychaete serpulid Hydroides elegans.
    Wong KS, Arenas-Mena C.
    Evol Dev; 2016 Jul 01; 18(4):254-66. PubMed ID: 27402571
    [Abstract] [Full Text] [Related]

  • 10. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T.
    Development; 2008 Jan 01; 135(2):353-65. PubMed ID: 18077587
    [Abstract] [Full Text] [Related]

  • 11. Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network.
    Livi CB, Davidson EH.
    Dev Biol; 2006 May 15; 293(2):513-25. PubMed ID: 16581059
    [Abstract] [Full Text] [Related]

  • 12. Embryonic expression of HeFoxA1 and HeFoxA2 in an indirectly developing polychaete.
    Arenas-Mena C.
    Dev Genes Evol; 2006 Nov 15; 216(11):727-36. PubMed ID: 17031669
    [Abstract] [Full Text] [Related]

  • 13. Maternal deployment of the embryonic SKN-1-->MED-1,2 cell specification pathway in C. elegans.
    Maduro MF, Broitman-Maduro G, Mengarelli I, Rothman JH.
    Dev Biol; 2007 Jan 15; 301(2):590-601. PubMed ID: 16979152
    [Abstract] [Full Text] [Related]

  • 14. Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo.
    Arenas-Mena C, Cameron RA, Davidson EH.
    Dev Growth Differ; 2006 Sep 15; 48(7):463-72. PubMed ID: 16961593
    [Abstract] [Full Text] [Related]

  • 15. Expression of the ctenophore Brain Factor 1 forkhead gene ortholog (ctenoBF-1) mRNA is restricted to the presumptive mouth and feeding apparatus: implications for axial organization in the Metazoa.
    Yamada A, Martindale MQ.
    Dev Genes Evol; 2002 Aug 15; 212(7):338-48. PubMed ID: 12185487
    [Abstract] [Full Text] [Related]

  • 16. Investigating the origins of triploblasty: 'mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa).
    Martindale MQ, Pang K, Finnerty JR.
    Development; 2004 May 15; 131(10):2463-74. PubMed ID: 15128674
    [Abstract] [Full Text] [Related]

  • 17. Molecular markers comparing the extremely simple body plan of dicyemids to that of lophotrochozoans: insight from the expression patterns of Hox, Otx, and brachyury.
    Kobayashi M, Furuya H, Wada H.
    Evol Dev; 2009 May 15; 11(5):582-9. PubMed ID: 19754714
    [Abstract] [Full Text] [Related]

  • 18. Capitella sp. I homeobrain-like, the first lophotrochozoan member of a novel paired-like homeobox gene family.
    Fröbius AC, Seaver EC.
    Gene Expr Patterns; 2006 Oct 15; 6(8):985-91. PubMed ID: 16765105
    [Abstract] [Full Text] [Related]

  • 19. Beta-catenin is required for the establishment of vegetal embryonic fates in the nemertean, Cerebratulus lacteus.
    Henry JQ, Perry KJ, Wever J, Seaver E, Martindale MQ.
    Dev Biol; 2008 May 01; 317(1):368-79. PubMed ID: 18387602
    [Abstract] [Full Text] [Related]

  • 20. Homeobox gene expression in Brachiopoda: the role of Not and Cdx in bodyplan patterning, neurogenesis, and germ layer specification.
    Altenburger A, Martinez P, Wanninger A.
    Gene Expr Patterns; 2011 Oct 01; 11(7):427-36. PubMed ID: 21782038
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.