These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 18542446

  • 1. Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV.
    Mutlugun E, Soganci IM, Demir HV.
    Opt Express; 2008 Mar 17; 16(6):3537-45. PubMed ID: 18542446
    [Abstract] [Full Text] [Related]

  • 2. Origin of low sensitizing efficiency of quantum dots in organic solar cells.
    ten Cate S, Schins JM, Siebbeles LD.
    ACS Nano; 2012 Oct 23; 6(10):8983-8. PubMed ID: 22950740
    [Abstract] [Full Text] [Related]

  • 3. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
    Tian J, Zhang Q, Zhang L, Gao R, Shen L, Zhang S, Qu X, Cao G.
    Nanoscale; 2013 Feb 07; 5(3):936-43. PubMed ID: 23166058
    [Abstract] [Full Text] [Related]

  • 4. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite.
    Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun LT, Zhang Y.
    Nanoscale; 2012 Jan 21; 4(2):441-3. PubMed ID: 22159842
    [Abstract] [Full Text] [Related]

  • 5. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells.
    Zhu G, Pan L, Xu T, Zhao Q, Lu B, Sun Z.
    Nanoscale; 2011 May 21; 3(5):2188-93. PubMed ID: 21451826
    [Abstract] [Full Text] [Related]

  • 6. Visible to near-infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics.
    Nimmo MT, Caillard LM, De Benedetti W, Nguyen HM, Seitz O, Gartstein YN, Chabal YJ, Malko AV.
    ACS Nano; 2013 Apr 23; 7(4):3236-45. PubMed ID: 23556540
    [Abstract] [Full Text] [Related]

  • 7. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH.
    ACS Nano; 2010 Jun 22; 4(6):3374-80. PubMed ID: 20496882
    [Abstract] [Full Text] [Related]

  • 8. High efficiency graphene solar cells by chemical doping.
    Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF.
    Nano Lett; 2012 Jun 13; 12(6):2745-50. PubMed ID: 22554195
    [Abstract] [Full Text] [Related]

  • 9. Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells.
    Tsukigase H, Suzuki Y, Berger MH, Sagawa T, Yoshikawa S.
    J Nanosci Nanotechnol; 2011 Mar 13; 11(3):1914-22. PubMed ID: 21449328
    [Abstract] [Full Text] [Related]

  • 10. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.
    Jiang L, You T, Deng WQ.
    Nanotechnology; 2013 Oct 18; 24(41):415401. PubMed ID: 24045808
    [Abstract] [Full Text] [Related]

  • 11. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode.
    Sun XW, Chen J, Song JL, Zhao DW, Deng WQ, Lei W.
    Opt Express; 2010 Jan 18; 18(2):1296-301. PubMed ID: 20173955
    [Abstract] [Full Text] [Related]

  • 12. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.
    Baek SW, Shim JH, Seung HM, Lee GS, Hong JP, Lee KS, Park JG.
    Nanoscale; 2014 Nov 07; 6(21):12524-31. PubMed ID: 25177831
    [Abstract] [Full Text] [Related]

  • 13. Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters.
    Yang MD, Liu YK, Shen JL, Wu CH, Lin CA, Chang WH, Wang HH, Yeh HI, Chan WH, Parak WJ.
    Opt Express; 2008 Sep 29; 16(20):15754-8. PubMed ID: 18825214
    [Abstract] [Full Text] [Related]

  • 14. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion.
    Beard MC, Johnson JC, Luther JM, Nozik AJ.
    Philos Trans A Math Phys Eng Sci; 2015 Jun 28; 373(2044):. PubMed ID: 25987579
    [Abstract] [Full Text] [Related]

  • 15. Sun-believable solar paint. A transformative one-step approach for designing nanocrystalline solar cells.
    Genovese MP, Lightcap IV, Kamat PV.
    ACS Nano; 2012 Jan 24; 6(1):865-72. PubMed ID: 22147684
    [Abstract] [Full Text] [Related]

  • 16. A solar photovoltaic system with ideal efficiency close to the theoretical limit.
    Zhao Y, Sheng MY, Zhou WX, Shen Y, Hu ET, Chen JB, Xu M, Zheng YX, Lee YP, Lynch DW, Chen LY.
    Opt Express; 2012 Jan 02; 20(1):A28-38. PubMed ID: 22379676
    [Abstract] [Full Text] [Related]

  • 17. Enhanced open-circuit voltage of PbS nanocrystal quantum dot solar cells.
    Yoon W, Boercker JE, Lumb MP, Placencia D, Foos EE, Tischler JG.
    Sci Rep; 2013 Jan 02; 3():2225. PubMed ID: 23868514
    [Abstract] [Full Text] [Related]

  • 18. Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability.
    Yang Y, Zhu L, Sun H, Huang X, Luo Y, Li D, Meng Q.
    ACS Appl Mater Interfaces; 2012 Nov 02; 4(11):6162-8. PubMed ID: 23075399
    [Abstract] [Full Text] [Related]

  • 19. Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV.
    Mutlugun E, Soganci IM, Demir HV.
    Opt Express; 2007 Feb 05; 15(3):1128-34. PubMed ID: 19532340
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.