These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


219 related items for PubMed ID: 18552235

  • 1. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions.
    Desclos M, Dubousset L, Etienne P, Le Caherec F, Satoh H, Bonnefoy J, Ourry A, Avice JC.
    Plant Physiol; 2008 Aug; 147(4):1830-44. PubMed ID: 18552235
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. A water-soluble chlorophyll protein in cauliflower may be identical to BnD22, a drought-induced, 22-kilodalton protein in rapeseed.
    Nishio N, Satoh H.
    Plant Physiol; 1997 Oct; 115(2):841-6. PubMed ID: 9342880
    [Abstract] [Full Text] [Related]

  • 4. Brassica napus Drought-Induced 22-kD Protein (BnD22) Acts Simultaneously as a Cysteine Protease Inhibitor and Chlorophyll-Binding Protein.
    Bouargalne Y, Guilbaud F, Macherel D, Delalande O, Deleu C, Le Cahérec F.
    Plant Cell Physiol; 2023 May 15; 64(5):536-548. PubMed ID: 36905393
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics.
    Zhu M, Dai S, Zhu N, Booy A, Simons B, Yi S, Chen S.
    J Proteome Res; 2012 Jul 06; 11(7):3728-42. PubMed ID: 22639841
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves.
    Maserti BE, Del Carratore R, Croce CM, Podda A, Migheli Q, Froelicher Y, Luro F, Morillon R, Ollitrault P, Talon M, Rossignol M.
    J Plant Physiol; 2011 Mar 01; 168(4):392-402. PubMed ID: 20926159
    [Abstract] [Full Text] [Related]

  • 14. Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley.
    Kurowska MM, Daszkowska-Golec A, Gajecka M, Kościelniak P, Bierza W, Szarejko I.
    Int J Mol Sci; 2020 Jun 18; 21(12):. PubMed ID: 32570736
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis.
    Lin W, Huang W, Ning S, Gong X, Ye Q, Wei D.
    PLoS One; 2019 Jun 18; 14(3):e0212863. PubMed ID: 30865659
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity.
    Etienne P, Desclos M, Le Gou L, Gombert J, Bonnefoy J, Maurel K, Le Dily F, Ourry A, Avice JC.
    Funct Plant Biol; 2007 Oct 18; 34(10):895-906. PubMed ID: 32689418
    [Abstract] [Full Text] [Related]

  • 20. Proteomic analysis of residual proteins in blades and petioles of fallen leaves of Brassica napus.
    Desclos-Théveniau M, Coquet L, Jouenne T, Etienne P.
    Plant Biol (Stuttg); 2015 Mar 18; 17(2):408-18. PubMed ID: 25294336
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.