These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


75 related items for PubMed ID: 18553343

  • 1. Bioengineering of photosynthetic membranes. Requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro.
    Daniell H, Rebeiz CA.
    Biotechnol Bioeng; 1984 May; 26(5):481-7. PubMed ID: 18553343
    [Abstract] [Full Text] [Related]

  • 2. Chloroplast biogenesis 87: Evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a.
    Kolossov VL, Kopetz KJ, Rebeiz CA.
    Photochem Photobiol; 2003 Aug; 78(2):184-96. PubMed ID: 12945588
    [Abstract] [Full Text] [Related]

  • 3. Initial stages of angiosperm greening monitored by low-temperature fluorescence spectra and fluorescence lifetimes.
    Mysliwa-Kurdziel B, Stecka A, Strzalka K.
    Methods Mol Biol; 2012 Aug; 875():231-9. PubMed ID: 22573443
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Chloroplast biogenesis 72: a [4-vinyl]chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate.
    Parham R, Rebeiz CA.
    Anal Biochem; 1995 Oct 10; 231(1):164-9. PubMed ID: 8678296
    [Abstract] [Full Text] [Related]

  • 7. Light-regulated pigment interconversion in pheophytin/chlorophyll-containing complexes formed during plant leaves greening.
    Ignatov NV, Litvin FF.
    Photosynth Res; 1995 Jan 10; 46(3):445-53. PubMed ID: 24301639
    [Abstract] [Full Text] [Related]

  • 8. Chloroplast biogenesis 92: In situ screening for divinyl chlorophyll(ide) a reductase mutants by spectrofluorometry.
    Kolossov VL, Bohnert HJ, Rebeiz CA.
    Anal Biochem; 2006 Jan 15; 348(2):192-7. PubMed ID: 16337140
    [Abstract] [Full Text] [Related]

  • 9. The formation of chlorophyll from chlorophyllide in leaves containing proplastids is a four-step process.
    Schoefs B, Bertrand M.
    FEBS Lett; 2000 Dec 15; 486(3):243-6. PubMed ID: 11119711
    [Abstract] [Full Text] [Related]

  • 10. Phototransformation of protochlorophyllideF657 in etiochloroplasts isolated from pine cotyledons; dark reformation of this pigment-complex from a pool of ALA-protochlorophyllideF635 in the presence of NADPH.
    Wolwertz MR, Brouers M.
    Photosynth Res; 1980 Jun 15; 1(2):105-13. PubMed ID: 24470049
    [Abstract] [Full Text] [Related]

  • 11. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves.
    Richter A, Peter E, Pörs Y, Lorenzen S, Grimm B, Czarnecki O.
    Plant Cell Physiol; 2010 May 15; 51(5):670-81. PubMed ID: 20375109
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Regulation of 5-aminolevulinic Acid synthesis in developing chloroplasts : I. Effect of light/dark treatments in vivo and in organello.
    Huang L, Castelfranco PA.
    Plant Physiol; 1989 Jul 15; 90(3):996-1002. PubMed ID: 16666911
    [Abstract] [Full Text] [Related]

  • 15. Nitric oxide regulates chlorophyllide biosynthesis and singlet oxygen generation differently between Arabidopsis and barley.
    Zhang ZW, Li MX, Huang B, Feng LY, Wu F, Fu YF, Zheng XJ, Peng HQ, Chen YE, Yang HN, Wu LT, Yuan M, Yuan S.
    Nitric Oxide; 2018 Jun 01; 76():6-15. PubMed ID: 29510200
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The protochlorophyllide-chlorophyllide cycle.
    Schoefs B.
    Photosynth Res; 2001 Jun 01; 70(3):257-71. PubMed ID: 16252171
    [Abstract] [Full Text] [Related]

  • 18. Spectroscopic analysis of desiccation-induced alterations of the chlorophyllide transformation pathway in etiolated barley leaves.
    Le Lay P, Böddi B, Kovacevic D, Juneau P, Dewez D, Popovic R.
    Plant Physiol; 2001 Sep 01; 127(1):202-11. PubMed ID: 11553748
    [Abstract] [Full Text] [Related]

  • 19. Isolation and classification of chlorophyll-deficient xantha mutants of Arabidopsis thaliana.
    Runge S, van Cleve B, Lebedev N, Armstrong G, Apel K.
    Planta; 1995 Sep 01; 197(3):490-500. PubMed ID: 8580762
    [Abstract] [Full Text] [Related]

  • 20. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat.
    Kumar Tewari A, Charan Tripathy B.
    Plant Physiol; 1998 Jul 01; 117(3):851-8. PubMed ID: 9662527
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.