These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
128 related items for PubMed ID: 18553844
1. Effects of immobilization on growth, fermentation properties, and macromolecular composition of Saccharomyces cerevisiae attached to gelatin. Doran PM, Bailey JE. Biotechnol Bioeng; 1986 Jan; 28(1):73-87. PubMed ID: 18553844 [Abstract] [Full Text] [Related]
2. Effects of Hydroxyurea on immobilized and suspended yeast fermentation rates and cell cycle operation. Doran PM, Bailey JE. Biotechnol Bioeng; 1986 Dec; 28(12):1814-31. PubMed ID: 18555299 [Abstract] [Full Text] [Related]
3. In vivo nuclear magnetic resonance analysis of immobilization effects on glucose metabolism of yeast Saccharomyces cerevisiae. Galazzo JL, Bailey JE. Biotechnol Bioeng; 1989 Apr 20; 33(10):1283-9. PubMed ID: 18587861 [Abstract] [Full Text] [Related]
4. Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol. Galazzo JL, Bailey JE. Biotechnol Bioeng; 1990 Aug 05; 36(4):417-26. PubMed ID: 18595096 [Abstract] [Full Text] [Related]
5. Parameter oscillation attenuation and mechanism exploration for continuous VHG ethanol fermentation. Bai FW, Ge XM, Anderson WA, Moo-Young M. Biotechnol Bioeng; 2009 Jan 01; 102(1):113-21. PubMed ID: 18949752 [Abstract] [Full Text] [Related]
6. Comparison of glucose fermentation by suspended and gel-entrapped yeast cells: An in vivo nuclear magnetic resonance study. Taipa MA, Cabral JM, Santos H. Biotechnol Bioeng; 1993 Mar 15; 41(6):647-53. PubMed ID: 18609600 [Abstract] [Full Text] [Related]
7. Comparative study of spent grains and delignified spent grains as yeast supports for alcohol production from molasses. Kopsahelis N, Agouridis N, Bekatorou A, Kanellaki M. Bioresour Technol; 2007 May 15; 98(7):1440-7. PubMed ID: 17157001 [Abstract] [Full Text] [Related]
8. Effects of immobilization on growth, fermentation properties, and macromolecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnology and Bioengineering, Vol. XXVIII, pp. 73-87 (1986). Doran PM, Bailey JE. Biotechnol Bioeng; 2009 Jul 01; 103(4):640-54; discussion 639. PubMed ID: 19472334 [No Abstract] [Full Text] [Related]
9. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. Kilonzo P, Margaritis A, Bergougnou M. J Biotechnol; 2009 Aug 10; 143(1):60-8. PubMed ID: 19539672 [Abstract] [Full Text] [Related]
10. Protein production using recombinant yeast in an immobilized-cell-film airlift bioreactor. Zhang Z, Scharer J, Moo-Young M. Biotechnol Bioeng; 1997 Jul 20; 55(2):241-51. PubMed ID: 18636482 [Abstract] [Full Text] [Related]
11. The use of microporous divinyl benzene copolymer for yeast cell immobilization and ethanol production in packed-bed reactor. Karagöz P, Erhan E, Keskinler B, Ozkan M. Appl Biochem Biotechnol; 2009 Jan 20; 152(1):66-73. PubMed ID: 18712507 [Abstract] [Full Text] [Related]
12. Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae. Hjortmo S, Patring J, Andlid T. Int J Food Microbiol; 2008 Mar 31; 123(1-2):93-100. PubMed ID: 18234383 [Abstract] [Full Text] [Related]
13. Production of L-phenylacetyl carbinol by immobilized yeast cells: I. Batch fermentation. Mahmoud WM, El-Sayed AH, Coughlin RW. Biotechnol Bioeng; 1990 Jun 05; 36(1):47-54. PubMed ID: 18592608 [Abstract] [Full Text] [Related]
14. Tracking of individual cell cohorts in asynchronous Saccharomyces cerevisiae populations. Porro D, Srienc F. Biotechnol Prog; 1995 Jun 05; 11(3):342-7. PubMed ID: 7619403 [Abstract] [Full Text] [Related]
15. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles. Liu CZ, Wang F, Ou-Yang F. Bioresour Technol; 2009 Jan 05; 100(2):878-82. PubMed ID: 18760598 [Abstract] [Full Text] [Related]
16. Comparison of substrate utilization and growth kinetics between immobilized and suspended Pseudomonas cells. Shreve GS, Vogel TM. Biotechnol Bioeng; 1993 Feb 05; 41(3):370-9. PubMed ID: 18609562 [Abstract] [Full Text] [Related]
17. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Chandel AK, Narasu ML, Chandrasekhar G, Manikyam A, Rao LV. Bioresour Technol; 2009 Apr 05; 100(8):2404-10. PubMed ID: 19114303 [Abstract] [Full Text] [Related]
18. Mass transfer effects on the reaction rate for heterogeneously distributed immobilized yeast cells. Gutenwik J, Nilsson B, Axelsson A. Biotechnol Bioeng; 2002 Sep 20; 79(6):664-73. PubMed ID: 12209814 [Abstract] [Full Text] [Related]
19. Studies on immobilized Saccharomyces cerevisiae. III. Physiology of growth and metabolism on various supports. Bandyopadhyay KK, Ghose TK. Biotechnol Bioeng; 1982 Apr 20; 24(4):805-15. PubMed ID: 18546372 [Abstract] [Full Text] [Related]
20. Corn starch gel for yeast cell entrapment. A view for catalysis of wine fermentation. Kandylis P, Goula A, Koutinas AA. J Agric Food Chem; 2008 Dec 24; 56(24):12037-45. PubMed ID: 19035657 [Abstract] [Full Text] [Related] Page: [Next] [New Search]