These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 18558799

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Pressure-adaptive differences in lactate dehydrogenases of three hagfishes: Eptatretus burgeri, Paramyxine atami and Eptatretus okinoseanus.
    Nishiguchi Y, Miwa T, Abe F.
    Extremophiles; 2008 May; 12(3):477-80. PubMed ID: 18299796
    [Abstract] [Full Text] [Related]

  • 3. Structure and function of lactate dehydrogenase from hagfish.
    Nishiguchi Y, Ito N, Okada M.
    Mar Drugs; 2010 Mar 15; 8(3):594-607. PubMed ID: 20411117
    [Abstract] [Full Text] [Related]

  • 4. Evolutionary implications of the cDNA sequence of the single lactate dehydrogenase of a lamprey.
    Stock DW, Whitt GS.
    Proc Natl Acad Sci U S A; 1992 Mar 01; 89(5):1799-803. PubMed ID: 1542673
    [Abstract] [Full Text] [Related]

  • 5. Identification of a natriuretic peptide (NP) in cyclostomes (lamprey and hagfish): CNP-4 is the ancestral gene of the NP family.
    Kawakoshi A, Hyodo S, Nozaki M, Takei Y.
    Gen Comp Endocrinol; 2006 Aug 01; 148(1):41-7. PubMed ID: 16740263
    [Abstract] [Full Text] [Related]

  • 6. Immunochemical evidence that the single lactate dehydrogenase of lampreys is more similar to LDHB4 than to LDHA4 of hagfish.
    Baldwin J, Lake PS, Moon TW.
    J Exp Zool; 1987 Jan 01; 241(1):1-8. PubMed ID: 3559497
    [Abstract] [Full Text] [Related]

  • 7. Sequence analysis of vasotocin cDNAs of the lamprey, Lampetra japonica, and the hagfish, Eptatretus burgeri: evolution of cyclostome vasotocin precursors.
    Suzuki M, Kubokawa K, Nagasawa H, Urano A.
    J Mol Endocrinol; 1995 Feb 01; 14(1):67-77. PubMed ID: 7772241
    [Abstract] [Full Text] [Related]

  • 8. Different pressure resistance of lactate dehydrogenases from hagfish is dependent on habitat depth and caused by tetrameric structure dissociation.
    Nishiguchi Y, Abe F, Okada M.
    Mar Biotechnol (NY); 2011 Apr 01; 13(2):137-41. PubMed ID: 20514503
    [Abstract] [Full Text] [Related]

  • 9. Lactate dehydrogenase (LDH) gene duplication during chordate evolution: the cDNA sequence of the LDH of the tunicate Styela plicata.
    Stock DW, Quattro JM, Whitt GS, Powers DA.
    Mol Biol Evol; 1997 Dec 01; 14(12):1273-84. PubMed ID: 9402738
    [Abstract] [Full Text] [Related]

  • 10. Development of the chondrocranium in hagfishes, with special reference to the early evolution of vertebrates.
    Oisi Y, Ota KG, Fujimoto S, Kuratani S.
    Zoolog Sci; 2013 Nov 01; 30(11):944-61. PubMed ID: 24199860
    [Abstract] [Full Text] [Related]

  • 11. Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly.
    Delarbre C, Gallut C, Barriel V, Janvier P, Gachelin G.
    Mol Phylogenet Evol; 2002 Feb 01; 22(2):184-92. PubMed ID: 11820840
    [Abstract] [Full Text] [Related]

  • 12. 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes.
    Mallatt J, Sullivan J.
    Mol Biol Evol; 1998 Dec 01; 15(12):1706-18. PubMed ID: 9866205
    [Abstract] [Full Text] [Related]

  • 13. Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences.
    Kuraku S, Kuratani S.
    Zoolog Sci; 2006 Dec 01; 23(12):1053-64. PubMed ID: 17261918
    [Abstract] [Full Text] [Related]

  • 14. The cDNA sequence of the lactate dehydrogenase-A of the spiny dogfish (Squalus acanthias): corrections to the amino acid sequence and an analysis of the phylogeny of vertebrate lactate dehydrogenases.
    Stock DW, Powers DA.
    Mol Mar Biol Biotechnol; 1995 Dec 01; 4(4):284-94. PubMed ID: 8541980
    [Abstract] [Full Text] [Related]

  • 15. Developmental biology of hagfishes, with a report on newly obtained embryos of the Japanese inshore hagfish, Eptatretus burgeri.
    Ota KG, Kuratani S.
    Zoolog Sci; 2008 Oct 01; 25(10):999-1011. PubMed ID: 19267636
    [Abstract] [Full Text] [Related]

  • 16. Evolutionary relationships of lactate dehydrogenases (LDHs) from mammals, birds, an amphibian, fish, barley, and bacteria: LDH cDNA sequences from Xenopus, pig, and rat.
    Tsuji S, Qureshi MA, Hou EW, Fitch WM, Li SS.
    Proc Natl Acad Sci U S A; 1994 Sep 27; 91(20):9392-6. PubMed ID: 7937776
    [Abstract] [Full Text] [Related]

  • 17. Elements of the major myofibrillar binding peptide motif are present in the earliest of true muscle type creatine kinases.
    Uda K, Suzuki T, Ellington WR.
    Int J Biochem Cell Biol; 2004 May 27; 36(5):785-94. PubMed ID: 15006631
    [Abstract] [Full Text] [Related]

  • 18. The nucleotide and deduced amino-acid sequences of a cDNA encoding lactate dehydrogenase from Caenorhabditis elegans: the evolutionary relationships of lactate dehydrogenases from mammals, birds, amphibian, fish, nematode, plants, bacteria, mycoplasma, and plasmodium.
    Tsoi SC, Li SS.
    Biochem Biophys Res Commun; 1994 Nov 30; 205(1):558-64. PubMed ID: 7999079
    [Abstract] [Full Text] [Related]

  • 19. Chromatin diminution and chromosome elimination in four Japanese hagfish species.
    Nakai Y, Kubota S, Kohno S.
    Cytogenet Cell Genet; 1991 Nov 30; 56(3-4):196-8. PubMed ID: 2055118
    [Abstract] [Full Text] [Related]

  • 20. Evolution of lactate dehydrogenase-A homologs of barracuda fishes (genus Sphyraena) from different thermal environments: differences in kinetic properties and thermal stability are due to amino acid substitutions outside the active site.
    Holland LZ, McFall-Ngai M, Somero GN.
    Biochemistry; 1997 Mar 18; 36(11):3207-15. PubMed ID: 9115998
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.