These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 18563649
21. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. George S, Jayachandran K. Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921 [Abstract] [Full Text] [Related]
22. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Camilios Neto D, Meira JA, de Araújo JM, Mitchell DA, Krieger N. Appl Microbiol Biotechnol; 2008 Dec; 81(3):441-8. PubMed ID: 18766338 [Abstract] [Full Text] [Related]
25. Physicochemical and surface-active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. Raza ZA, Khan MS, Khalid ZM. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jan; 42(1):73-80. PubMed ID: 17129951 [Abstract] [Full Text] [Related]
26. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Müller MM, Hörmann B, Syldatk C, Hausmann R. Appl Microbiol Biotechnol; 2010 Jun; 87(1):167-74. PubMed ID: 20217074 [Abstract] [Full Text] [Related]
28. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability. Das K, Mukherjee AK. J Appl Microbiol; 2007 Jan; 102(1):195-203. PubMed ID: 17184335 [Abstract] [Full Text] [Related]
29. Production of rhamnolipid biosurfactants by Pseudomonas aeruginosa DS10-129 in a microfluidic bioreactor. Rahman PK, Pasirayi G, Auger V, Ali Z. Biotechnol Appl Biochem; 2010 Feb 02; 55(1):45-52. PubMed ID: 19958287 [Abstract] [Full Text] [Related]
30. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Marsudi S, Unno H, Hori K. Appl Microbiol Biotechnol; 2008 Apr 02; 78(6):955-61. PubMed ID: 18299827 [Abstract] [Full Text] [Related]
31. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Cha M, Lee N, Kim M, Kim M, Lee S. Bioresour Technol; 2008 May 02; 99(7):2192-9. PubMed ID: 17611103 [Abstract] [Full Text] [Related]
32. Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Liu X, Ren B, Chen M, Wang H, Kokare CR, Zhou X, Wang J, Dai H, Song F, Liu M, Wang J, Wang S, Zhang L. Appl Microbiol Biotechnol; 2010 Aug 02; 87(5):1881-93. PubMed ID: 20473663 [Abstract] [Full Text] [Related]
34. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Perfumo A, Banat IM, Canganella F, Marchant R. Appl Microbiol Biotechnol; 2006 Aug 02; 72(1):132. PubMed ID: 16344932 [Abstract] [Full Text] [Related]
35. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Benincasa M, Abalos A, Oliveira I, Manresa A. Antonie Van Leeuwenhoek; 2004 Jan 02; 85(1):1-8. PubMed ID: 15028876 [Abstract] [Full Text] [Related]
39. Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant-producing Pseudomonas aeruginosa AK6U. Ismail WA, Mohamed ME, Awadh MN, Obuekwe C, El Nayal AM. Microb Biotechnol; 2017 Nov 02; 10(6):1628-1639. PubMed ID: 28695623 [Abstract] [Full Text] [Related]
40. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Müller MM, Hörmann B, Kugel M, Syldatk C, Hausmann R. Appl Microbiol Biotechnol; 2011 Feb 02; 89(3):585-92. PubMed ID: 20890599 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]