These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


519 related items for PubMed ID: 18563830

  • 1. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering.
    Tripathi A, Kathuria N, Kumar A.
    J Biomed Mater Res A; 2009 Sep 01; 90(3):680-94. PubMed ID: 18563830
    [Abstract] [Full Text] [Related]

  • 2. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering.
    Kathuria N, Tripathi A, Kar KK, Kumar A.
    Acta Biomater; 2009 Jan 01; 5(1):406-18. PubMed ID: 18701361
    [Abstract] [Full Text] [Related]

  • 3. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold.
    Srivastava A, Kumar A.
    J Biomater Sci Polym Ed; 2009 Jan 01; 20(10):1393-415. PubMed ID: 19622279
    [Abstract] [Full Text] [Related]

  • 4. Proliferation of chondrocytes on a 3-d modelled macroporous poly(hydroxyethyl methacrylate)-gelatin cryogel.
    Singh D, Tripathi A, Nayak V, Kumar A.
    J Biomater Sci Polym Ed; 2011 Jan 01; 22(13):1733-51. PubMed ID: 20843432
    [Abstract] [Full Text] [Related]

  • 5. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications.
    Sharma A, Bhat S, Nayak V, Kumar A.
    Mater Sci Eng C Mater Biol Appl; 2015 Feb 01; 47():298-312. PubMed ID: 25492201
    [Abstract] [Full Text] [Related]

  • 6. Porous gelatin hydrogels: 2. In vitro cell interaction study.
    Dubruel P, Unger R, Vlierberghe SV, Cnudde V, Jacobs PJ, Schacht E, Kirkpatrick CJ.
    Biomacromolecules; 2007 Feb 01; 8(2):338-44. PubMed ID: 17291056
    [Abstract] [Full Text] [Related]

  • 7. Supermacroprous chitosan-agarose-gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering.
    Bhat S, Tripathi A, Kumar A.
    J R Soc Interface; 2011 Apr 06; 8(57):540-54. PubMed ID: 20943683
    [Abstract] [Full Text] [Related]

  • 8. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies.
    Chang KH, Liao HT, Chen JP.
    Acta Biomater; 2013 Nov 06; 9(11):9012-26. PubMed ID: 23851171
    [Abstract] [Full Text] [Related]

  • 9. Correlation between cryogenic parameters and physico-chemical properties of porous gelatin cryogels.
    Van Vlierberghe S, Dubruel P, Lippens E, Cornelissen M, Schacht E.
    J Biomater Sci Polym Ed; 2009 Nov 06; 20(10):1417-38. PubMed ID: 19622280
    [Abstract] [Full Text] [Related]

  • 10. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering.
    Hwang Y, Sangaj N, Varghese S.
    Tissue Eng Part A; 2010 Oct 06; 16(10):3033-41. PubMed ID: 20486791
    [Abstract] [Full Text] [Related]

  • 11. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering.
    Jiang X, Yu F, Wang Z, Li J, Tan H, Ding M, Fu Q.
    J Biomater Sci Polym Ed; 2010 Oct 06; 21(12):1637-52. PubMed ID: 20537246
    [Abstract] [Full Text] [Related]

  • 12. Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications.
    Tripathi A, Kumar A.
    Macromol Biosci; 2011 Jan 10; 11(1):22-35. PubMed ID: 21077225
    [Abstract] [Full Text] [Related]

  • 13. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells.
    Singh D, Zo SM, Kumar A, Han SS.
    J Biomater Sci Polym Ed; 2013 Jan 10; 24(11):1343-59. PubMed ID: 23796035
    [Abstract] [Full Text] [Related]

  • 14. Gelatin-fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study.
    Dainiak MB, Allan IU, Savina IN, Cornelio L, James ES, James SL, Mikhalovsky SV, Jungvid H, Galaev IY.
    Biomaterials; 2010 Jan 10; 31(1):67-76. PubMed ID: 19783036
    [Abstract] [Full Text] [Related]

  • 15. Designing supermacroporous cryogels based on polyacrylonitrile and a polyacrylamide-chitosan semi-interpenetrating network.
    Jain E, Kumar A.
    J Biomater Sci Polym Ed; 2009 Jan 10; 20(7-8):877-902. PubMed ID: 19454158
    [Abstract] [Full Text] [Related]

  • 16. Vascularization of wide pore agarose-gelatin cryogel scaffolds implanted subcutaneously in diabetic and non-diabetic mice.
    Bloch K, Vanichkin A, Damshkaln LG, Lozinsky VI, Vardi P.
    Acta Biomater; 2010 Mar 10; 6(3):1200-5. PubMed ID: 19703598
    [Abstract] [Full Text] [Related]

  • 17. Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications.
    Bhat S, Kumar A.
    J Biosci Bioeng; 2012 Dec 10; 114(6):663-70. PubMed ID: 22884715
    [Abstract] [Full Text] [Related]

  • 18. Three-dimensional supermacroporous carrageenan-gelatin cryogel matrix for tissue engineering applications.
    Sharma A, Bhat S, Vishnoi T, Nayak V, Kumar A.
    Biomed Res Int; 2013 Dec 10; 2013():478279. PubMed ID: 23936806
    [Abstract] [Full Text] [Related]

  • 19. Tunable hybrid cryogels functionalized with microparticles as supermacroporous multifunctional biomaterial scaffolds.
    Sami H, Kumar A.
    J Biomater Sci Polym Ed; 2013 Dec 10; 24(10):1165-84. PubMed ID: 23713421
    [Abstract] [Full Text] [Related]

  • 20. Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: effect of disturbed shear stress conditions.
    Vrana NE, Cahill PA, McGuinness GB.
    J Biomed Mater Res A; 2010 Sep 15; 94(4):1080-90. PubMed ID: 20694975
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.